
However, since I found an unexpected problem in the process, I have to mention that part
first. Maxwell’s equationsand theequationsof theelectromagneticfieldarewell‑knownequa‑
tions that are relativistically consistent. However, there was an unresolved problem in the
case of such an electromagnetic field, especially in the case of the force applied to a certain
charge by the field. And, prior to the advent of Feynman’s formula in the 1950s, such prob‑
lems could not be addressed precisely. Nevertheless, it was a little imprudent to conclude
that the equations of the electromagnetic field were relativistically consistent by looking only
at Maxwell’s equations. As a result, it was not wrong, but it was enough to make students
mistake a problem that was not specifically solved as if it had been solved. I’m not sure who
was actually the first to address such a problem, but the first generally available description is
found in a section of Purcell’s book ”Electricity and Magnetism,” published in the 1950s. It is
also indirectly covered in Griffiths’ ”Introduction to Electrodynamics” book published in the
1990s.

However, they only dealt with the problem of charges running in parallel and did notmen‑
tion the general cases. I cannot fathom the reasonwhy this unfinished problemwas not taken
seriously, but fortunately, I was able to solve this problem immediately, I suppose it was due
to my approach being fortuitously right. Therefore, I completed a missing brick of the theory
of relativity and electromagnetism.

6.1 The force between parallel moving charges

Figure 79: Two charges moving in parallel

First, I will look at the force between two charges running side by sidewith the same veloc‑
ity v, separated by r perpendicular to the direction of travel, and the resulting motion. I will
assume that the charge Qa is fixed, themotion is unaffected by the electromagnetic field, and
that Qb has a mass m0.
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Earlier, Purcell’s formula E⃗p = q
4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p, which expresses the electric field due

to charges moving at constant velocity, was introduced. Since this case is θ = π
2 → sin θ = 1,

when the electric field of Qa at rest is E0, it can be seen that it is

E⃗ =
q

4πε0r2
1− β2

(1− β2)3/2
r̂ =

q

4πε0r2
1√

1− β2
r̂ =

γqr̂

4πε0r2
= γE⃗0

At this point, when the rest mass of Qb is m0 and the inertial mass ism = γm0, the acceler‑
ationwill be looked to be a⃗ = γ E⃗0

m = E⃗0
m0

. Let’s consider the case of observing themovement of
Qb in an inertial framemovingwith Qa andQb again. The electric field is E0, and the restmass
of Qb is m0. Therefore, the acceleration felt by Qb is E⃗0

m0
= a⃗, which is calculated the same as

the acceleration measured in the stationary inertial system above. However, this contradicts
relativity. When viewed from a stationary inertial system, time seems to flow slowly at a rate
of 1/γ in an inertial systemmoving at v speed, which means that in the case of acceleration, a
change in speedby 1/γ occurs after γ times of the timehas passed. Therefore, the acceleration
should be observed as small as γ squared times. Nevertheless, the fact that it counts as the
same amount means that for some reason it was calculated as larger as the γ‑squared. This
relationship can also be confirmed through the a⃗′ = γ2((γ − 1)(⃗a · v̂)v̂ + a⃗) equation used to
derive the Larmor formula before. Exactly, it is the case in the opposite direction of the equa‑
tion. If obtaining the opposite direction equation, from the previously obtained relativistic
sum equation of velocities

u⃗ =
1

1 + v⃗·u⃗′

c2

(
u⃗′

γ
+ v⃗ +

γ − 1

γ
(u⃗′ · v̂)v̂

)
and

dt′

dt
=

d

dt

(
γt− γβ

x

c

)
= γ

dt

dt
− 1

c2
γv

dx

dt
= γ − γ

vv

c2
=

1

γ

, it is

u⃗ = 1

1+ v⃗·u⃗′
c2

(
u⃗′

γ + v⃗ + γ−1
γ (u⃗′ · v̂)v̂

)
v⃗ + dv⃗ = 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ + v⃗ + γ−1
γ (dv⃗′ · v̂)v̂

)
dv⃗ = 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ + v⃗ + γ−1
γ (dv⃗′ · v̂)v̂ − v⃗ − v⃗·dv⃗′

c2
v⃗
)

= 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ +
(
γ−1
γ −

v2

c2

)
(dv⃗′ · v̂)v̂

)
= 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ +
(
γ−1
γ + 1

γ2 − 1
)
(dv⃗′ · v̂)v̂

)
= 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ + γ2−γ+1−γ2

γ2 (dv⃗′ · v̂)v̂
)

= 1

1+ v⃗·dv⃗′
c2

(
dv⃗′

γ + 1−γ
γ2 (dv⃗′ · v̂)v̂

)
= 1

γ
1

1+ v⃗·dv⃗′
c2

(
dv⃗′ + 1−γ

γ (dv⃗′ · v̂)v̂
)
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, so when dv’ is infinitesimal, it becomes

dv⃗
dt = 1

γ
1

1+ v⃗·dv⃗′
c2

(
dv⃗′

dt′
dt′

dt + 1−γ
γ

(
dv⃗′

dt′
dt′

dt · v̂
)
v̂
)

a⃗ = 1
γ

(
a⃗′

γ + 1−γ
γ

(
a⃗′

γ · v̂
)
v̂
)

= 1
γ2

(
a⃗′ + 1−γ

γ (⃗a′ · v̂)v̂
)

. Through this specific acceleration conversion equation, the relationship between a and a′
that is observed in different inertial frames can be confirmed. However, there is a caveat
when using these relativistic acceleration conversion formulas. These formulas are conver‑
sionequationsbetweenanunmarked stationary inertial system that observes theobjectmov‑
ing as a velocity v when it is moving with a velocity v and a primed inertial frame in which the
object appears to be stationary. In other cases, physically correct results are not produced. In
fact, different values are obtained depending on the transformation path, which is physically
contradictory. Therefore, it can be seen that the entire formula cannot be used or it must be
used within the above limitations, and when used within the limitations, a physically consis‑
tent result is obtained. Of course, it can be applied to deal with more general cases, and the
methodwill be introduced later, but when dealing with relativity problems, we should always
be careful which observer’s position we are in. If a theory of relativity cannot specify a spe‑
cific observer’s position, it is likely a theory that started from an incorrect interpretation. The
theory of relativity cannot be dealt with inmechanical mathematics, andwemust always pay
attention to the meaning of physical quantities and their changes according to the change
of perspective and use mathematics according to the physically correct interpretation. If we
treat relativity only as a mechanical mathematical logic, we will immediately arrive at things
like the twin paradox.

Even using the above equation, there is a way to convert the acceleration from an inertial
system in which an object is observed to be moving, even though it is not a more general sta‑
tionary inertial system. I will introduce that method later, but before that, I will introduce an
acceleration transformation formula that can directly handle a more general situation. It can
be obtained by extending the earlier equation dt′

dt = 1
γ to more general cases.

From the Lorentz transformations of time t′ = γt− γ v⃗·r⃗
c2

and the inverse of it, t = γt′ + γ v⃗·r⃗′
c2

,
we can derive the equations

dt

dt′
= γ

(
1 +

v⃗ · u⃗′

c2

)
→ dt′

dt
=

1

γ
(
1 + v⃗·u⃗′

c2

)
and

dt′

dt
= γ

(
1− v⃗ · u⃗

c2

)
→ dt

dt′
=

1

γ
(
1− v⃗·u⃗

c2

)
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. These equations are the same as the formula used so far when u⃗′ = 0 and u⃗ = v⃗ are satisfied.
Using these, we can derive the acceleration transformation formula,

u⃗ = 1

1+ v⃗·u⃗′
c2

(
u⃗′

γ + v⃗ + γ−1
γ (u⃗′ · v̂)v̂

)
a⃗ = du⃗

dt = du⃗
dt′

dt′

dt = 1

γ
(
1+ v⃗·u⃗′

c2

) d
dt′

(
1

1+ v⃗·u⃗′
c2

(
u⃗′

γ + v⃗ + γ−1
γ

u⃗′·v⃗
v2

v⃗
))

= 1

γ
(
1+ v⃗·u⃗′

c2

)
((

u⃗′

γ + v⃗ + γ−1
γ

u⃗′·v⃗
v2

v⃗
)

d
dt′

(
1

1+ v⃗·u⃗′
c2

)
+ 1(

1+ v⃗·u⃗′
c2

) d
dt′

(
u⃗′

γ + v⃗ + γ−1
γ

u⃗′·v⃗
v2

v⃗
))

= 1

γ
(
1+ v⃗·u⃗′

c2

)
((

u⃗′

γ + v⃗ + γ−1
γ

u⃗′·v⃗
v2

v⃗
)

−1
c2

0+v⃗·⃗a′(
1+ v⃗·u⃗′

c2

)2 + 1(
1+ v⃗·u⃗′

c2

) ( a⃗′

γ + γ−1
γ

a⃗′·v⃗
v2

v⃗
))

= −1

γ
(
1+ v⃗·u⃗′

c2

)3

((
u⃗′

γ + v⃗ + γ−1
γ

u⃗′·v⃗
v2

v⃗
)

v⃗·⃗a′
c2
−
(
a⃗′

γ + γ−1
γ

a⃗′·v⃗
v2

v⃗
)(

1 + v⃗·u⃗′

c2

))
= −1

γ
(
1+ v⃗·u⃗′

c2

)3

(
v⃗·⃗a′
c2

u⃗′

γ −
1+ v⃗·u⃗′

c2

γ a⃗′ +
(
v⃗·⃗a′
c2

+ γ−1
γ

u⃗′·v⃗
v2

v⃗·⃗a′
c2
− γ−1

γ
a⃗′·v⃗
v2
− γ−1

γ
a⃗′·v⃗
v2

v⃗·u⃗′

c2

)
v⃗

)
= −1

γ
(
1+ v⃗·u⃗′

c2

)3

(
v⃗·⃗a′
c2

u⃗′

γ −
1+ v⃗·u⃗′

c2

γ a⃗′ +
(
v⃗·⃗a′
c2
− γ−1

γ
a⃗′·v⃗
v2

)
v⃗

)
= −1

γ
(
1+ v⃗·u⃗′

c2

)3

(
v⃗·⃗a′
c2

u⃗′

γ −
1+ v⃗·u⃗′

c2

γ a⃗′ +
(
v2

c2
− γ−1

γ

)
a⃗′·v⃗
v2

v⃗

)
= 1

γ2
(
1+ v⃗·u⃗′

c2

)3

((
1 + v⃗·u⃗′

c2

)
a⃗′ − v⃗·⃗a′

c2
u⃗′ − γ−1

γ
a⃗′·v⃗
v2

v⃗
)

, and the inverse transformation for acceleration,

u⃗′ = 1
1− u⃗·v⃗

c2

(
u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
)

a⃗′ = du⃗′

dt′ = du⃗′

dt
dt
dt′ =

1

γ
(
1− v⃗·u⃗

c2

) d
dt

(
1

1− u⃗·v⃗
c2

(
u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
))

= 1

γ
(
1− v⃗·u⃗

c2

) ( u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
)

d
dt

(
1

1− u⃗·v⃗
c2

)
+ 1

γ
(
1− u⃗·v⃗

c2

)2
d
dt

(
u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
)

= 1

γ
(
1− v⃗·u⃗

c2

) ( u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
)

−1
c2

0−v⃗·⃗a(
1− u⃗·v⃗

c2

)2 + 1

γ
(
1− u⃗·v⃗

c2

)2

(
a⃗
γ + γ−1

γ
a⃗·v⃗
v2

v⃗
)

= 1

γ
(
1− v⃗·u⃗

c2

)3

((
u⃗
γ − v⃗ + γ−1

γ
u⃗·v⃗
v2

v⃗
)

v⃗·⃗a
c2

+
(
a⃗
γ + γ−1

γ
a⃗·v⃗
v2

v⃗
)(

1− u⃗·v⃗
c2

))
= 1

γ
(
1− v⃗·u⃗

c2

)3

(
v⃗·⃗a
c2

u⃗
γ +

1− u⃗·v⃗
c2

γ a⃗+
(
− v⃗·⃗a

c2
+ γ−1

γ
u⃗·v⃗
v2

v⃗·⃗a
c2

+ γ−1
γ

a⃗·v⃗
v2
− γ−1

γ
a⃗·v⃗
v2

v⃗·u⃗′

c2

)
v⃗

)
= 1

γ
(
1− v⃗·u⃗

c2

)3

(
v⃗·⃗a
c2

u⃗
γ +

1− u⃗·v⃗
c2

γ a⃗+
(
− v⃗·⃗a

c2
+ γ−1

γ
a⃗·v⃗
v2

)
v⃗

)
= 1

γ
(
1− v⃗·u⃗

c2

)3

(
v⃗·⃗a
c2

u⃗
γ +

1− u⃗·v⃗
c2

γ a⃗+
(
−v2

c2
+ γ−1

γ

)
a⃗·v⃗
v2

v⃗

)
= 1

γ2
(
1− v⃗·u⃗

c2

)3

((
1− u⃗·v⃗

c2

)
a⃗+ v⃗·⃗a

c2
u⃗− γ−1

γ
a⃗·v⃗
v2

v⃗
)

. Again, when u⃗′ = 0 and u⃗ = v⃗ are satisfied, they match the previously used formulas.
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Now, if analyzing the motion in more detail based on these formulas, only an electric field
exists in ′ inertial frame running side by side with Qs at v speed, but in a stationary inertial
frame, there is also amagnetic field due to themoving charge Qa, and thismagnetic field also
affects themovement of Qb. Thus, themotion of Qb is the sum of the force due to the electric
field and the force due to the magnetic field at its position, and the principle of relativity is
maintained by showing that the result of the sum of the electric and magnetic fields, rather
than the result of the electric field alone, is consistent with the result of the electric field alone
in the ′ inertial system. In other words, the phenomenon of the magnetic field itself is a part
of the essential factors to establish the principle of relativity. Of course, the factor due to this
magnetic field is in the direction of decreasing in the opposite direction to the effect of the
electric field. I will add the effect of this magnetic field and calculate it again.

Figure 80: Relationship between r and E in a moving charge

The force exerted on a charge by electric and magnetic fields is traditionally expressed by
the Lorentz force formula F⃗ = q(E⃗+v⃗×B⃗). Thedeflection termaddedearlierwill be discussed
later. At this time, the magnetic field B is B⃗ = r̂

c × E⃗ and |r̂τ × E⃗p| = v
cEp when a point charge

is the source, so it can be confirmed that it is

F⃗ = q(E⃗p + v⃗ × B⃗) = q

(
E⃗p + v⃗ ×

(
r̂τ
c
× E⃗p

))
= qE⃗p

(
1− v2

c2

)
. Therefore, when adding the effect of the magnetic field, it is confirmed that the principle of
relativity is satisfied by weakening the effect of the electric field by the required 1 − v2

c2
= 1

γ2

times.

So far is the part covered in exactly the sameway in Purcell’s book. By theway, Purcell only
dealt directly up to this point and only indirectly mentioned the part I will deal with from now
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on. That part of the problem is the case of two charges moving in a line series.

Figure 81: Two charges moving in a series line

In the case of two charges running in a line, one additional factor different from the case
of running side by side is added, which is the relativistic length contraction effect. And, in the
case of θ=0 in Purcell’s formula q

4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p, the denominator is 1 and the numerator

is 1/γ2, so the strength of the electric field becomes γ2 times weaker than when felt in an in‑
ertial frame moving together, but since the distance is reduced to 1/γ, the total electric field
strength cancels out and becomes equal. At this time, since the inertial mass increases by γ
times, the acceleration will decrease by that much. However, comparing the accelerations in
the stationary inertial frame and in the moving inertial frame, it was pointed out earlier that
the acceleration is at a rate of γ times slower in γ times more time than the stationary inertial
frame, so that a is γ2 times smaller than a′. And, if the acceleration is in the direction of travel,
the slowing effect is added by the length contraction effect that will make it γ times smaller
again. The relational expression is a⃗′ = γ2((γ − 1)(⃗a · v̂)v̂ + a⃗) and a⃗ = 1

γ2

(
a⃗′ + 1−γ

γ (⃗a′ · v̂)v̂
)
as

obtained earlier, which in this case is a⃗ = 1
γ3 a⃗

′.

In this case, as in the horizontal case, it can be seen that the effect of reducing the acceler‑
ation by γ2 times is required in addition to the effect of increasing the relativistic inertial mass
by γ times.

So, I came up with the following idea. It’s actually a simple solution. I just considered the
addition of a new force that would play the same role as the magnetic force in the horizontal
direction as a factor making the force due to the electric field as small as γ2 in all directions.
That’s rather neat mathematically.

Earlier, the force due to themagnetic field caused by themoving charge was expressed as
v⃗ × B⃗ = v⃗ ×

(
r̂τ
c × E⃗p

)
. Expressing this with the familiar BAC‑CAB rule, it can be decomposed

into two terms with v⃗ ×
(
r̂τ
c × E⃗p

)
= r̂τ

c (v⃗ · E⃗p) − E⃗p

(
v⃗ · r̂τc

). Among them, if analyzing the
−E⃗p

(
v⃗ · r̂τc

) term using the ’Relationship between r and E for a moving charge’ figure, we can
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see that it is−E⃗p

(
v⃗ · r̂τc

)
= −E⃗p

(
v⃗ · v

c2
v̂
)
= −E⃗p

v2

c2
and therefore

E⃗p

(
1− v2

c2

)
= E⃗p − E⃗p

(
v⃗ · r̂τ

c

)
= E⃗p + v⃗ ×

(
r̂τ
c
× E⃗p

)
− r̂τ

c
(v⃗ · E⃗p)

.

Here, it is r̂τ
c (v⃗ · E⃗p) = 0 in the case where two charges run side by side, which is a familiar

situation. We see that when the two charges run in a line, the corresponding term remains as
v⃗ · E⃗p = vEp. And, even when running in a line, the size of the necessary correction term is
also 1

γ2 times ofmultiplication, which is an adding−E⃗p
v2

c2
as in the case of parallel, which is an

addition of− r̂τ
c (v⃗ · E⃗p) in the case of r̂τ

c = v
c .

This led me to speculate that the original expression for the total force due to relativistic
effects was not v⃗ ×

(
r̂τ
c × E⃗p

)
, but rather−E⃗p

(
v⃗ · v⃗

c2

)
= v⃗ ×

(
r̂τ
c × E⃗p

)
− v⃗

c2
(v⃗ · E⃗p), as a way to

express both case of the parallel and the straight‑line movements simultaneously.

In order to actually verify this conjecture, I will have to deal with the case where there is a
difference in velocity between the two charges.

6.2 The force between two charges with different velocities

Figure 82: Two charges with different velocities

The diagram on the left shows Qb orbiting in a circular orbit around the charge Qa at a
speed d. Since this problemwas initially devised to deal with the orbital case, a circular orbit
was drawn, but in fact, the purpose is to deal with Qb moving at a speed d in an arbitrary di‑
rection in an arbitrary position around Qa.
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Three inertial frames appear in this analysis. One is the point of view of a stationary ob‑
server and will usually be denoted by a physical quantity labeled 0 or p. The second is from
the perspective of the v inertial system,which is the velocity atwhich theQa charge ismoving,
and there will be no mark or v mark. Finally, it is the point of view of the Qb charge moving
with a velocity difference of d relative to the Qa and v inertial systems, and since this speed
will be marked as u based on the stationary observer, its physical quantities will be generally
marked u or d. For example, the case of the unlabeled Lorentz factor γ is γ = 1√

1− v2

c2

, which
is needed to deal with the v inertial system. However, sometimes a name different from the
previous rule is given, in which case it will be specified separately.

For convenience, assume that the distance between Qa and Qb is r=1. This structure will
look like the picture on the left from the point of view of the v inertial system itself, but it will
look like the picture on the right from the standpoint of a stationary observer, an observer
passing by at a speed of ‑v to the left with respect to the v inertial system. Qa moves with the
speedof v, andQb is seenasmovingwith the relative speedofQaandp. In fact, d canbe called
p′, but since I plan to use it often, I gave it a separate name d. And, the distance r between Qa
and Qb on the left side is contracted by a factor of 1/γ in the forward direction component in
the right figure.

The velocity of Qa is v and the velocity of Qb is u⃗ = v⃗ + p⃗. And, according to the relativistic
velocity sum formula obtained earlier, it is also u⃗ = 1

1+ v⃗·d⃗
c2

(
d⃗
γ + v⃗ + γ−1

γ (d⃗ · v̂)v̂
)
. Therefore, ap‑

plying similar calculations as previously done for dv, we have

v⃗ + p⃗ = 1

1+ v⃗·d⃗
c2

(
d⃗
γ + v⃗ + γ−1

γ (d⃗ · v̂)v̂
)

p⃗ = 1
γ

1

1+ v⃗·d⃗
c2

(
d⃗+ 1−γ

γ (d⃗ · v̂)v̂
)

Note that p is not used and is just for interest, but d is useful, andusing the previous relativistic
velocity difference formula, d is

d⃗ =
1

1− u⃗·v⃗
c2

(
u⃗

γ
− v⃗ +

γ − 1

γ
(u⃗ · v̂)v̂

)
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Continuing, prepare some basic formulas in advance. These are γ = γv = 1√
1− v2

c2

, γu =

1√
1−u2

c2

, and γd = 1√
1− d2

c2

. At this point, since it is

u⃗ · u⃗ = 1(
1+ v⃗·d⃗

c2

)2

(
d⃗
γ + v⃗ + γ−1

γ (d⃗ · v̂)v̂
)
·
(
d⃗
γ + v⃗ + γ−1

γ (d⃗ · v̂)v̂
)

= 1(
1+ v⃗·d⃗

c2

)2

(
d⃗
γ +

(
v + γ−1

γ (d⃗ · v̂)
)
v̂
)
·
(
d⃗
γ +

(
v + γ−1

γ (d⃗ · v̂)
)
v̂
)

= 1(
1+ v⃗·d⃗

c2

)2

(
d2

γ2 +
(
v + γ−1

γ (d⃗ · v̂)
)2

+ 2 1
γ

(
v + γ−1

γ (d⃗ · v̂)
)
(d⃗ · v̂)

)
= 1(

1+ v⃗·d⃗
c2

)2

(
d2

γ2 +
(
v2 + (γ−1)2

γ2 (d⃗ · v̂)2 + 2v γ−1
γ (d⃗ · v̂)

)
+
(
2 v
γ (d⃗ · v̂) + 2γ−1

γ2 (d⃗ · v̂)2
))

= 1(
1+ v⃗·d⃗

c2

)2

(
d2

γ2 + v2 + 2vγ−2v+2v
γ (d⃗ · v̂) + γ2−2γ+1+2γ−2

γ2 (d⃗ · v̂)2
)

= 1(
1+ v⃗·d⃗

c2

)2

(
d2

γ2 + v2 + 2v(d⃗ · v̂) + γ2−1
γ2 (d⃗ · v̂)2

)
= 1(

1+ v⃗·d⃗
c2

)2

(
d2

γ2 + v2 + 2v(d⃗ · v̂) + (d⃗ · v̂)2 − 1
γ2 (d⃗ · v̂)2

)
=

(v+d⃗·v̂)2+ d2−(d⃗·v̂)2

γ2(
1+ v⃗·d⃗

c2

)2

it can be seen that it is

γu = 1√
1− u⃗·u⃗

c2

= 1√√√√√1− 1
c2

(v+d⃗·v̂)2+ d2−(d⃗·v̂)2
γ2(

1+ v⃗·d⃗
c2

)2

= 1√√√√√
(
1+ v⃗·d⃗

c2

)2
−
(

v+d⃗·v̂
c

)2
− d2−(d⃗·v̂)2

c2γ2(
1+ v⃗·d⃗

c2

)2

=
1+ v⃗·d⃗

c2√
1+2 v⃗·d⃗

c2
+
(

v⃗·d⃗
c2

)2
− v2

c2
−2 v⃗·d⃗

c2
− (d⃗·v̂)2

c2
−
(
1− v2

c2

)
d2−(d⃗·v̂)2

c2

=
1+ v⃗·d⃗

c2√
1+

v2(d⃗·v̂)2
c4

− v2

c2
− (d⃗·v̂)2

c2
− d2

c2
+

(d⃗·v̂)2
c2

+ v2d2

c4
− v2(d⃗·v̂)2

c4

=
1+ v⃗·d⃗

c2√
1− v2

c2
− d2

c2
+ v2d2

c4

=
1+ v⃗·d⃗

c2√
1− v2

c2

√
1− d2

c2

= γγd

(
1 + v⃗·d⃗

c2

)
Based on these, the following analyses become possible.
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Thesemotions can be defined from three different perspectives asmentioned earlier. One
is the perspective of the stationary inertial system, where we observe Qa to be moving with
velocity v and Qb to be moving with velocity u. The other is the perspective of the v inertial
system,whereweobserveQa tobe at rest andQb tobemovingwith velocity d. The third is the
perspective of the u inertial system, where we observe Qb to be at rest and Qa to be moving
with velocity ‑d (‑d is just a temporary name, not exact, and will be discussed later). In classi‑
cal mechanics, the relations between the three inertial systems and their transformations are
simple additions, but in relativity, the transformations are Lorentz transformations and the
relations must be expressed using relativistic velocity sums. For the electromagnetic force to
be relativistically consistent, it must be described without contradiction in all these inertial
systems. The absence of contradiction can be defined as themotion by electromagnetic force
obtained in one inertial system must be the same as the motion by electromagnetic force in
that inertial systemwhen described in another inertial system.

Earlier, when describing themotion of an object in a stationary inertial system, I identified
the possibility of a new force/acceleration in addition to the electric andmagnetic fields. As a
way of characterizing these forces, I devised the following process.

Considering the observation in the u inertial frame specified earlier, since Qb is stationary
in the u inertial frame, the acceleration due to themagnetic field or the new acceleration term
previously estimated that requires the motion term of Qb does not occur, and the force re‑
ceived by Qb is the force only by the electric field generated by Qa moving at ‑d speed. And,
since the mass of Qb in the u inertial frame is the rest mass, the acceleration of Qb can also
be known if only the electric field is known. If this is called a′, it can be converted to the accel‑
eration in the stationary inertial system by the previously prepared acceleration conversion
formula a⃗ = 1

γ2

(
a⃗′ + 1−γ

γ (⃗a′ · v̂)v̂
)
. By multiplying this by the relativistic inertial mass γu of Qb

in a stationary inertial frame, the total acceleration applied to Qb by fields originating from
Qa in the stationary inertial frame can be obtained. Other accelerations could be obtained by
subtracting the pure acceleration due to the Coulomb force of the expression of the stationary
inertial system of the electric field generated by Qa from this total acceleration. Let’s check to
see if this is the correct idea.
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Figure 83: Side‑by‑side parallel movement

I will first analyze the case where Qa and Qb are positioned horizontally to the direction of
travel v, Qb has a relative velocity of d with respect to Qa, and the direction of d is the same as
the direction of v.

In this case, since the directions of v and d are identical, v⃗ · d⃗ = vd and u⃗ = v+d
1+ vd

c2

v̂ respec‑
tively. And since the acceleration is perpendicular to the direction of motion, a⃗′ · v̂ = 0. How‑
ever, as mentioned earlier, the acceleration conversion formula is completely reliable only
between the inertial frame in which the object to be analyzed is stationary and the inertial
frame in which the object is observed, so the starting point of the calculation should be the
acceleration in the u inertial frame, which is the inertial frame of the object.

The electric field at Qb in the u inertial frame is, according to Purcell’s formula
E⃗ = q

4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p, θ = π

2 → sin θ = 1, and r is unchanged as ru = rv. And, the rela‑
tive velocity between the v inertial frame and the u inertial frame is d. As will be explained
later, Wigner rotation is applied between the two inertial frames, so the direction of a physical
quantity such as thedirectionof dmay lookdifferent in both inertial frames, but the size or the
relative relationship between each physical quantity does not change. But, in this case, since
the directions of d, v, and u are all the same, Wigner rotation does not occur. Based on this,
if the electric field due to Qa felt in the u inertial frame is calculated, if the magnitude of the
electric field due toQameasured in the v inertial frame is E⃗v = q

4πε0r2
r̂ = 1r̂, it can be seen that

the magnitude at the Qb position in the u inertial frame is E⃗d = q
4πε0r2

1√
1−β2

d

r̂ = γdE⃗v = γdr̂.

At this time, if Qb’s charge and rest mass are set to 1, the acceleration that Qb receives be‑
comes a⃗′ = γdr̂ in the u inertial frame.

If the acceleration of Qb observed in the stationary inertial frame is calculated by applying
the previously obtained acceleration conversion formula a⃗ = 1

γ2

(
a⃗′ + 1−γ

γ (⃗a′ · û)û
)
→ a⃗ = a⃗′

γ2
u
,

the magnitude is a = γd
γ2
u
. On the other hand, looking at the motion of Qb by the electric field
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Ep generated by Qa in the stationary inertial frame, the charge of Qb is 1, the inertial mass of
Qb is γu, and the electric field is E⃗p = γvE⃗v = γr̂ because the velocity of Qa is v. Therefore, the
acceleration acting on Qb becomes γ

γu
. What to find here is the component obtained by sub‑

tracting the acceleration by the Coulomb force from the total acceleration, which is the term
corresponding to q v2

c2
E⃗p in F⃗ = qE⃗p

(
1− v2

c2

)
, and the acceleration due to this term is γd

γ2
u
− γ

γu

obtained by subtracting the acceleration γ
γu

due to the Coulomb force from the total accelera‑
tion γd

γ2
u
experienced by Qb. The component of the acceleration is obtained bymultiplying this

by the inertialmass in the stationary inertial frame, and then dividing by themagnitude of the
electric field in the stationary inertial frame, that is,

(
γd
γ2
u
− γ

γu

)
γu
γ = γd

γγu
− 1 is the component

of the acceleration due to the induced field to obtain. By calculating this,

γd
γγu
− 1 = γd

γγγd

(
1+ v⃗·d⃗

c2

) − 1

= 1

γ2
(
1+ v⃗·d⃗

c2

) − 1

=
1−γ2

(
1+ v⃗·d⃗

c2

)
γ2

(
1+ v⃗·d⃗

c2

)
=

1− v2

c2
−1− v⃗·d⃗

c2

1+ v⃗·d⃗
c2

=
− v2

c2
− vd

c2

1+ vd
c2

= −v(v+d)

c2
(
1+ vd

c2

)
is obtained.

For now, the interpretation of this will be postponed for a while, the following case will be
analyzed first, and then the two results will be interpreted together.

Figure 84: Motion in a straight line

This is the case where Qa and Qb exist on a straight line in the direction of travel andmove
with relative speed d in the same direction as v. In the v inertial system which is the moving
velocity of Qa, the distance between the two is r=1. If each physical quantity at this time is
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measured in the stationary coordinate system, they are as follows.

First, in this case, since the directions of v, d, and u are the same, they are also v⃗ · d⃗ = vd

and u⃗ = v+d
1+ vd

c2

v̂. However, the acceleration is the same as the direction of motion, so a⃗′ · û = a′.
Therefore, it is the case of a⃗ = 1

γ2

(
a⃗′ + 1−γ

γ (⃗a′ · û)û
)
→ a⃗ = a⃗′

γ3
u
. From the perspective of the

u inertial system, the distance between Qa and Qb is measured as reduced by 1/γd, but since
θ=0, therefore, the electric field felt by Qb in the u inertial system is E⃗d = q

4πε0
(

r
γd

)2

1−β2
d

1 r̂ =

q
4πε0r2

r̂ = E⃗v = 1r̂, and the acceleration is a′ = 1.

Accordingly, the total acceleration seen in the stationary inertial system is a = a′

γ3
u
= 1

γ3
u
. On

the other hand, the magnitude of the electric field due to Qa for the Qb position seen in the
stationary inertial frame is E⃗0 =

q

4πε0
(

r
γ

)2
1−β2

1 r̂ = q
4πε0r2

r̂ = E⃗v = 1r̂without change, as in the u

inertial frame, by γ according to v and the corresponding distance reduction. Therefore, 1
γu

is
the acceleration due to the electric field alone because only the inertialmass needs to be con‑
sidered, and the value obtained by subtracting the acceleration due to the electric field only
from the total acceleration obtained above and multiplying this value by the inertial mass is
the force term corresponding to the acceleration due to the induced field, which is(

1
γ3
u
− 1

γu

)
γu = 1

γ2
u
− 1

= 1− u2

c2
− 1

= −1
c2

(v+d)2(
1+ vd

c2

)2

By comparing these results with the result of

−E⃗p

(
v⃗ · v⃗

c2

)
= v⃗ ×

(
r̂τ
c
× E⃗p

)
− v⃗

c2
(v⃗ · E⃗p)

in the case of the force between charges moving in parallel, which was examined earlier sec‑
tion, it can be inferred that they correspond to

−v(v + d)

c2
(
1 + vd

c2

) =
−vu
c2
→ u⃗×

(
v⃗

c2
× E⃗p

)
= u⃗×

(
r̂τ
c
× E⃗p

)
= u⃗× B⃗

and

−1
c2

(v + d)2(
1 + vd

c2

)2 = −u2

c2
→ −u⃗

c2
(u⃗ · E⃗p)

respectively. These are more straightforward expressions than I expected.

Furthermore, this term −u⃗
c2
(u⃗·E⃗p) is actually anexpression that has alreadybeendiscovered
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in a different way. This term appears in the exercises of Griffiths’ electromagnetism book. Of
course, it can be seen that the starting point, the definition of force F⃗ = dp⃗

dt , appeared quite
early before Griffiths. However, I do not knowwho first derived this simple result,

dp⃗
dt = d

dt(γmv⃗) = d
dt

mv⃗√
1− v2

c2

= mv⃗
(
−1

2

) −2a⃗·v⃗
c2
(
1− v2

c2

)3/2 + ma⃗√
1− v2

c2

= γ3m a⃗·v⃗
c2
v⃗ + γma⃗

, and for now, it should be attributed to Griffiths himself.

The meaning of this equation is not trivial. It’s because it shows that

F⃗ =
dp⃗

dt
̸= ma⃗

is the conclusion of relativity. This will be considered again later. And, applying the definition
of Lorentz force to this equation results in

F⃗ = q(E⃗ + v⃗ × B⃗) = γ3m a⃗·v⃗
c2
v⃗ + γma⃗

a⃗ = q
γm(E⃗ + v⃗ × B⃗)− γ2 a⃗·v⃗

c2
v⃗ . . . (1)

a⃗ · v⃗ = q
γmE⃗ · v⃗ − γ2 v

2

c2
a⃗ · v⃗

a⃗ · v⃗ = q(E⃗·v⃗)
γm

(
1+γ2 v2

c2

) = q(E⃗·v⃗)
γ3m

, and applying this final result to (1) results in

a⃗ = q
γm(E⃗ + v⃗ × B⃗)− γ2 q(E⃗·v⃗)

γ3m
v⃗
c2

= q
γm

(
E⃗ + v⃗ × B⃗ − E⃗·v⃗

c2
v⃗
)

, where −u⃗
c2
(u⃗ · E⃗) reappears. According to the definition of Newtonian mechanics, F⃗ = ma⃗, it

can be seen as if a new force‑like term has emerged. Therefore, looking at the results so far,
it can be understood that this acceleration term is the element that completes the relativistic
consistency of electromagnetism.

This result is an analysis of the case that is easiest to analyze, and it is necessary to check
whether this relationship actually holds in any magnitude and direction of d⃗. Even in the re‑
sults, if it is confirmed that the acceleration due to this −u⃗

c2
(u⃗ · E⃗) term corrects the relativistic

transformation of the acceleration for any direction and magnitude in all inertial systems, its
correctness may be considered to be proven.

However, the analysis of arbitrary velocities is a very complicated computation, which is
too difficult for symbolic computation, so I will deal with it as numerical computation.
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6.3 Numerical computation for arbitrary velocity differences
The first step is to enter the basic functions. Since friCAS does not have vector multiplication
and scalar multiplication operators, define and input them as functions. Readers who have
followed the calculations in this book in the meantime should restart friCAS and input. The
numbering of calculation inputs may not be consistent if re‑entry is required, so we ignore
it. A Cartesian coordinate system was used, and the origin of the position vector [0,0,0] is the
position of Qa.

(1) ‑> cX (a, b) == vector [a. 2 b. 3 ‑ a. 3 b. 2, a. 3 b. 1 ‑ a. 1 b. 3, a. 1 b. 2 ‑ a. 2 b. 1]

Type: Void

(2) ‑> cX ([1, 0, 0], [0, 1, 0]), cX ([0, 1, 0], [0, 0, 1]), cX ([0, 0, 1], [1, 0, 0])
Compiling function cX with type (List(NonNegativeInteger), List(

NonNegativeInteger)) ‑> Vector(Integer)

[[0, 0, 1], [1, 0, 0], [0, 1, 0]]

Type: Tuple(Vector(Integer))

I defined cX as a function responsible for the×operator in vector product a⃗× b⃗ and simply
tested it.

(3) ‑> dX (a, b) == a. 1 b. 1 + a. 2 b. 2 + a. 3 b. 3

Type: Void

(4) ‑> sq (v) == dX (v, v)

Type: Void
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(5) ‑> dX ([1, 2, 3], [2, 3, 4])

Compiling function dX with type (List(PositiveInteger), List(
PositiveInteger)) ‑> PositiveInteger

20

Type: PositiveInteger

dX was defined as a function responsible for the · operator in scalar product a⃗ · b⃗, and the
sq function was defined and tested simply to express v2 = v⃗ · v⃗.

(6) ‑>Gm(v, c) == 1√
1− dX(v,v)

c2

Type: Void

(7) ‑> Gm ([x, y, z], c)

1√
−z2−y2−x2+c2

c2

Type: Expression(Integer)
A function to calculate γv,c =

1√
1− v2

c2

was entered and tested.

(9) ‑> E(p, v, c) ==
1− sq(v)

c2(
sq(p)− sq(cX(v,p))

c2

)3/2 p

Type: Void

(11) ‑> E (vector [1, 1, 1], vector [0.3, 0.2, ‑ 0.1], 1),

E (vector [1.0, 1.0, ‑ 1.0], vector [0, 0, 0], 1)

[[0.1896149635_9998254822, 0.1896149635_9998254822, 0.1896149635_9998254822],
[0.1924500897_2987525484, 0.1924500897_2987525484,−0.1924500897_2987525484]]

Type: Tuple(Vector(Expression(Float)))
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This function calculates the electric field according to Purcell’s formula. p is the position
vector, v is the velocity vector, and c is the scalar value of the speed of light. r̂p

r2p
=

r⃗p
r3p

=

xx̂+yŷ+zẑ
(x2+y2+z2)3/2

= p⃗
(p⃗·p⃗)3/2 and p⃗ × v⃗ = pv sin θ → sin2 θ = (p⃗×v⃗)2

p2v2
were applied to Purcell’s for‑

mula E⃗ = q
4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p, constants were excluded, and

E⃗ = q
4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p

= q
4πε0

1− v2

c2(
1− v2

c2
(p⃗×v⃗)2

p2v2

)3/2
p⃗

(p⃗·p⃗)3/2

= q
4πε0

1− v2

c2(
p2− (p⃗×v⃗)2

c2

)3/2 p⃗

→
1− v2

c2(
p2− (p⃗×v⃗)2

c2

)3/2 p⃗

was organized and entered as a Cartesian coordinate expression.

(12)− >U(v, d, c) ==

if (v = [0, 0, 0]) then d
else

(
1

1+
dX(d,v)

c2

(
1

Gm(v,c)d+ v +
(
1− 1

Gm(v,c)

)
dX(d,v)
sq(v) v

))
Type: Void

(13)− >U(vector[0.1, 0.2, 0.3], vector[0.1, 0.1, 0.1], 1), U(vector[0.0, 0.0, 0.0], vector[0.1, 0.1, 0.1], 1)

Cannotcompilemap : dX

Wewill attempt to interpret the code.

[[0.1847634420_2423559974, 0.2820399171_0983248484, 0.3793163921_9542936994], [0.1, 0.1, 0.1]]
Type: Tuple(Vector(Float))

The relativistic velocity sum formula
u⃗ = 1(

1+ v⃗·d⃗
c2

) ( d⃗
γ + v⃗ + γ−1

γ (d⃗ · v̂)v̂
)

= 1(
1+ v⃗·d⃗

c2

) ( d⃗
γ + v⃗ +

(
1− 1

γ

)
d⃗·v⃗
v2

v⃗
)
was entered and tested.

The case of v=0, which is divided by 0 and causes an error, is handled separately with an if
statement.

(14) ‑> rr (d, r, c) ==
if (d = [0, 0, 0]) then r
else

(
r −

(
1− 1

Gm(d,c)

)
dX(d,r)
dX(d,d)d

)
Type: Void
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(15) ‑> rr (vector [0.8, 0, 0], vector [0.8, 4, 4], 1.0), rr (‑ vector [0.8, 0, 0], ‑ vector [0.8, 4, 4], 1)
Cannot compile map: Gm

We will attempt to interpret the code.

[[0.48, 4.0, 4.0], [−0.48,−4.0,−4.0]]
Type: Tuple(Vector(Float))

Function r⃗ − γ−1
γ (r⃗ · d̂)d̂ to handle relativistic length contraction of coordinates. It is a for‑

mula that selectively applies relativistic length contraction to the components of the coordi‑
nate r in the direction of relative velocity d only. As mentioned earlier, the basic coordinates
will be given in the v inertial systemwithQa as the origin, sowe need to take relativistic length
contraction into accountwhen converting them tovalues in the rest anducoordinate systems.
This function will take care of that. The actual usage will be explained later along with usage
examples.

(16) ‑> A (a, u, c) ==
if (u = [0, 0, 0]) then a
else

(
1

Gm(u,c)2

(
a+

(
1

Gm(u,c) − 1
)

dX(a,u)
sq(u) u

))
Type: Void

(17) ‑> rA (a, v, c) ==
if (v = [0, 0, 0]) then a
else

(
Gm(v, c)2

(
a+ (Gm(v, c)− 1)dX(a,v)

sq(v) v
))

Type : V oid

(18) ‑> dA (a, u, d, c) ==
if (u = [0, 0, 0]) then a
else

(
1

Gm(u,c)2
(
1+

dX(u,d)

c2

)3

((
1 + dX(u,d)

c2

)
a+

(
1

Gm(u,c) − 1
)

dX(a,u)
sq(u) u− dX(a,u)

c2
d
))

Type : V oid

These are the relativistic acceleration conversion formulas a⃗ = 1
γ2

(
a⃗′ + 1−γ

γ (⃗a′ · v̂)v̂
)
, a⃗′ =

γ2((γ − 1)(⃗a · v̂)v̂ + a⃗) and a⃗ = 1

γ2
(
1+ v⃗·u⃗′

c2

)3

((
1 + v⃗·u⃗′

c2

)
a⃗′ − v⃗·⃗a′

c2
u⃗′ − γ−1

γ
a⃗′·v⃗
v2

v⃗
)
. Use it by entering

u ← v⃗ and d ← u⃗′. When converting inversely, simply enter u ← −v⃗ and d ← u⃗ = v⃗ ⊕ u⃗′ in the
same formula, so one formula can be used in both cases.
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Also, since we have to deal with Wigner rotation, we need to prepare for that as well.

(19) ‑> Λmatrix :=


γ −βxγ −βyγ −βzγ
−βxγ 1 + (γ−1)β2

x
β2

(γ−1)βxβy

β2
(γ−1)βxβz

β2

−βyγ (γ−1)βxβy

β2 1 +
(γ−1)β2

y

β2
(γ−1)βyβz

β2

−βzγ (γ−1)βxβz

β2
(γ−1)βyβz

β2 1 + (γ−1)β2
z

β2




γ −βxγ −βyγ −βzγ
−βxγ β2

xγ+β2−β2
x

β2
βxβyγ−βxβy

β2
βxβzγ−βxβz

β2

−βyγ βxβyγ−βxβy

β2

β2
yγ+β2−β2

y

β2
βyβzγ−βyβz

β2

−βzγ βxβzγ−βxβz

β2
βyβzγ−βyβz

β2
β2
zγ+β2−β2

z
β2


Type: Matrix(Fraction(Polynomial(Integer)))

(20) ‑> ΛMeval

(
Λmatrix,

[
γ = 1√

1−β2
x−β2

y−β2
z

, β =
√
β2
x + β2

y + β2
z

])


1√
−β2

z−β2
y−β2

x+1
− βx√

−β2
z−β2

y−β2
x+1

− βy√
−β2

z−β2
y−β2

x+1
− βz√

−β2
z−β2

y−β2
x+1

− βx√
−β2

z−β2
y−β2

x+1

(β2
z+β2

y)
√

−β2
z−β2

y−β2
x+1+β2

x

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

−βxβy

√
−β2

z−β2
y−β2

x+1+βxβy

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

−βxβz

√
−β2

z−β2
y−β2

x+1+βxβz

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

− βy√
−β2

z−β2
y−β2

x+1

−βxβy

√
−β2

z−β2
y−β2

x+1+βxβy

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

(β2
z+β2

x)
√

−β2
z−β2

y−β2
x+1+β2

y

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

−βyβz

√
−β2

z−β2
y−β2

x+1+βyβz

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

− βz√
−β2

z−β2
y−β2

x+1

−βxβz

√
−β2

z−β2
y−β2

x+1+βxβz

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

−βyβz

√
−β2

z−β2
y−β2

x+1+βyβz

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1

(β2
y+β2

x)
√

−β2
z−β2

y−β2
x+1+β2

z

(β2
z+β2

y+β2
x)
√

−β2
z−β2

y−β2
x+1


Type: SquareMatrix(4,Expression(Integer))

A Lorentz transformation matrix ΛM was prepared by substituting an expression for a more
specificcalculation into the transformationmatrixobtainedwhile introducing the3‑dimensional
Lorentz transformation.

From now on, I will explain by making specific calculations based on these.

(21) ‑> digits (20) ;
c := 1 ;
r := vector [0.6, 1.0, 0] ;
d := vector [0, 0, 0.8] ;
v := vector [0.8, 0, 0] ;
u := U (v, d, c)

[0.8, 0.0, 0.48]

Type: Vector(Float)
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First, the number of significant digits for calculation was appropriately determined to be
20. We don’t always have to type this in, but I’ll continue to do it as a custom as it will come
in handy later. Assuming 1 as the speed of light, enter it. Then, enter the coordinates r of Qb
based onQa in the v inertial system, its relative velocity d, and the velocity v of Qa as arbitrary
values, and based on these, find the velocity u of Qb.

We can see that the appropriate values are calculated and printed out. And, I will do the
following calculation.

(22) ‑> U (u, ‑ d, c)
[0.9320091673_0328495034, 0.0, 0.0916730328_4950343774_4]

Type: Vector(Float)

The value obtained by adding d to v through the relativistic sumof velocities is u, butwhen
‑d is added to u, we can see that the original v does not come out. This property is called non‑
linearity in mathematics, but it seems a bit broad here. And it’s not always the case.

(23) ‑> digits (20) ;
c := 1 ;
r := vector [0.6, 1.0, 0] ;
d := vector [0.4, 0, ‑ 0.4] ;
v := vector [0.3, 0, ‑ 0.3] ;
u := U (v, d, c)
[0.5645161290_3225806452, 0.0,−0.5645161290_3225806452]

Type: Vector(Float)

(24) ‑> U (u, ‑ d, c)
[0.3, 0.0,−0.3]

Type: Vector(Float)

When v, d, and u are in the same direction, we can see that the original v is obtained by
adding ‑d to u. This is because the relativistic sum of velocities of two velocities that are not
in the same direction corresponds to two Lorentz transformations, and a phenomenon repre‑
sented by one Lorentz transformation and one Wigner rotation transformation is involved.
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I will check this out. Earlier, to obtain theWigner rotation, a Lorentz transformationmatrix
for each velocity was obtained and multiplied, and then an inverse matrix for the sum of the
velocities was obtained and the product of the former two matrices was multiplied to leave
a rotation matrix. I will use it again. I will continue to explain the order of matrix multiplica‑
tion and the order of application of rotation matrices during the calculation, but in fact, it’s
worthmentioning that in the actual process of discovery, I tested all possible combinations of
orders and identified thecorrectworkingcombination,whichwas theoriginalmethod I found.

First, enter values that are not in the same direction again.

(25) ‑> digits (20) ;
c := 1 ;
r := vector [0.6, 1.0, 0] ;
d := vector [0, 0, 0.8] ;
v := vector [0.8, 0, 0] ;
u := U (v, d, c)
[0.8, 0.0, 0.48]

Type: Vector(Float)

Then, find the Lorentz transform matrix Λv for velocity v, the Lorentz transform matrix Λd
for velocity d, and the inverse of the Lorentz transform matrix iΛu for the relativistic velocity
sum u.

(26) ‑> Λv := eval
(
ΛM,

[
βx = v.1

c , βy = v.2
c , βz =

v.3
c

])
1.6666666666_666666667 −1.3333333333_333333333 0.0 0.0

−1.3333333333_333333333 1.6666666666_666666667 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0


Type: SquareMatrix(4,Expression(Float))

(27) ‑> Λd := eval
(
ΛM,

[
βx = d.1

c , βy = d.2
c , βz =

d.3
c

])
1.6666666666_666666667 0.0 0.0 −1.3333333333_333333333

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

−1.3333333333_333333333 0.0 0.0 1.6666666666_666666667


Type: SquareMatrix(4,Expression(Float))
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(28) ‑> i Λu := eval
(
ΛM,

[
βx = −1u.1

c , βy = −1u.2
c , βz = −1u.3

c

])
2.7777777777_777777778 2.2222222222_222222222 0.0 1.3333333333_333333333
2.2222222222_222222222 2.3071895424_836601307 0.0 0.7843137254_9019607844

0.0 0.0 1.0 0.0

1.3333333333_333333333 0.7843137254_9019607844 0.0 1.4705882352_941176471


Type: SquareMatrix(4,Expression(Float))

In order to rotate only within the xz plane and make it easy to see, v and d are set to the
values of x and z only. There are four possible orders of multiplication using these values.

(29) ‑> ΛR := iΛuΛvΛd
1.0 −0.1E − 19 0.0 0.3E − 19

−0.7E − 20 0.8823529411_764705882 0.0 0.4705882352_941176471
0.0 0.0 1.0 0.0

0.1E − 19 −0.4705882352_941176471 0.0 0.8823529411_764705882


Type: SquareMatrix(4,Expression(Float))

(30) ‑> rΛR := ΛdΛviΛu
1.0 −0.7E − 20 0.0 0.2E − 19

−0.1E − 19 0.8823529411_764705882 0.0 −0.4705882352_941176471
0.0 0.0 1.0 0.0

0.3E − 19 0.4705882352_941176471 0.0 0.8823529411_764705882


Type: SquareMatrix(4,Expression(Float))

(31) ‑> iΛuΛdΛv
1.7901234567_90123457 −0.0987654320_987654321 0.0 −1.4814814814_81481481
1.3536673928_83079158 0.3013798111_837327524 0.0 −1.6557734204_793028323

0.0 0.0 1.0 0.0

−0.6100217864_9237472765 0.9586056644_8801742918 0.0 0.6732026143_790849673


Type: SquareMatrix(4,Expression(Float))

(32) ‑> ΛvΛdiΛu
1.7901234567_90123457 1.3536673928_830791576 0.0 −0.6100217864_923747276
−0.0987654320_987654321 0.3013798111_837327524 0.0 0.9586056644_880174292

0.0 0.0 1.0 0.0

−1.4814814814_81481481 −1.6557734204_793028323 0.0 0.6732026143_790849673


Type: SquareMatrix(4,Expression(Float))

The results show that only the combinations named ΛR and rΛR contain rotations in the xz
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plane, which means that when two Lorentz transformations are combined into one Lorentz
transformation for the relativistic sum of two velocities and one related rotation transforma‑
tion, the order of application is Lorentz transformation ‑> rotation transformation. In fact,
since the u inertial system is an inertial system obtained by adding d velocity to the v iner‑
tial system, the order of the velocity sum is v‑>d, and if this is expressed as vector and matrix
multiplication, it can be seen that thematrixmultiplication order of the second ΛdΛviΛu is the
rotational transformation by removing a Lorentz transformation once from the order of v‑>d.
However, the reason why the reverse rotation iΛuΛvΛd was chosen as ΛR, was because that
was practically neededmore often inmy calculations. This will be presented by the following
calculations.

First, extracting only the rotational transformations for space excluding the time term from
the Lorentz transformation, it is

(33) ‑> rM :=

 ΛR(2, 2) ΛR(2, 3) ΛR(2, 4)

ΛR(3, 2) ΛR(3, 3) ΛR(3, 4)

ΛR(4, 2) ΛR(4, 3) ΛR(4, 4)


 0.8823529411_764705882 0.0 0.4705882352_941176471

0.0 1.0 0.0

−0.4705882352_941176471 0.0 0.8823529411_764705882


Type: Matrix(Expression(Float))

(34) ‑> rrM :=

 rΛR(2, 2) rΛR(2, 3) rΛR(2, 4)

rΛR(3, 2) rΛR(3, 3) rΛR(3, 4)

rΛR(4, 2) rΛR(4, 3) rΛR(4, 4)


 0.8823529411_764705882 0.0 −0.4705882352_941176471

0.0 1.0 0.0

0.4705882352_941176471 0.0 0.8823529411_764705882


Type: Matrix(Expression(Float))

Among these rotational transformations, If rM(‑d) obtainedby applying rM to ‑d is obtained
to obtain the relativistic speed sumwith u, it is,

(35) ‑> U (u, rM ‑ d, 1)
[0.8, 0.0, 0.1882295438_3428896424E − 19]

Type: Vector(Expression(Float))
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then the original v=[0.8,0,0] is obtained again with little floating point error. This means
that an inertial system applied with d Lorentz transformation to the v inertial system with v
Lorentz transformation was a transformation applied with u Lorentz transformation and cer‑
tain rotational transformation. And, it can be interpreted that in order to return to the v in‑
ertial system from the result, it is necessary to apply the inverse transformation of the final
rotation transformation to the last result. Of course, I found the combination that gave the
right answers by trying all possible ways with the possibility of this and that interpretation in
mind rather than this interpretation, so the importance of these interpretations is left to each
person’s judgment. By the way, the interpretation of the application of the calculation order
is only important in the end which gives the correct answer, but there is a more important
interpretation. It’s a matter of what case rotation is applied. There is no rotational relation
between the physical quantities in the stationary inertial frame and the v inertial frame. And,
this should be the same between the physical quantities of the stationary inertial frame and
the u inertial frame. If so, the rotationmust exist only in the physical quantity change between
the v inertial frame and the u inertial frame. This should be kept in mind. With these calcula‑
tions, we now have a rough idea of how to apply the Wigner rotation.

Now it’s time to proceed with the detailed electric field calculations. Since Qb is in a sta‑
tionary state in the u inertial system, the applied force is only the force due to the electric field
caused by themoving chargeQa, and no force from themagnetic field or other induced forces
exists. Thus, the acceleration in the u inertial system will be converted to the acceleration
in the stationary inertial system. At this point, if the newly added force is called the induced
electric force, in the stationary inertial frame, the sum of the acceleration due to this force
and the acceleration due to the electric andmagnetic fields is obtained. If this result is always
the same as the acceleration converted from the u inertial system, the existence of the new
induced electric force is proved, and at the same time, the relativistic acceleration conversion
problem that has not been solved so far is solved.

For this purpose, first, the electric field in u inertial framemust be obtained, and to do so,
the following calculation is required.

(36) ‑> id := rM ‑ d
[−0.3764705882_3529411765, 0.0,−0.7058823529_4117647058]

Type: Vector(Expression(Float))
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And, the relative velocity rM(‑d) of Qa observed fromQb obtained earlier is assigned to the
id variable.

(37) ‑> dr := rr (id, rM r, c)
[0.5294117647_0588235293, 1.0,−0.2823529411_7647058824]

Type: Vector(Expression(Float))

This functionapplies thepreviouslyprepared relativistic lengthcontraction tocoordinates.
The relative velocity observed by Qb is id as obtained above, and the relative position is en‑
tered by applying the Wigner rotation to r in the inertial frame based on Qa. This result, dr, is
the position of Qb based on Qa determined by Qb.

(38) ‑> ed := E (dr, id, c)

Compiling function cX with type (Vector(Expression(Float)), Vector(
Expression(Float))) ‑> Vector(Expression(Float))

[0.5563319154_7094129771, 1.0508491736_673335624,−0.2967103549_1783535879]
Type: Vector(Expression(Float))

Now that we know the position and relative velocity, we can input it into Purcell’s formula
to calculate the electric field felt by Qb.

Now it’s time to calculate the electric andmagnetic fields in a stationary inertial frame.

(39) ‑> p := rr (v, r, c)
[0.36, 1.0, 0.0]

Type: Vector(Float)

P is the position of Qb relative to the origin of Qa observed in a stationary inertial frame.
Apply relativistic length contraction in the direction ofmotion to r of the v inertial frame crite‑
rion.
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(40) ‑> ep := E (p, v, c)

Compiling function cX with type (Vector(Float), Vector(Float)) ‑>
Vector(Float)

[0.3783057025_2024008245, 1.0508491736_673335624, 0.0]
Type: Vector(Float)

The electric field by Purcell’s formula at the Qb position observed in the stationary inertial
frame was obtained and stored in ep.

(41) ‑> ev := E (r, [0, 0, 0], c)

Compiling function cX with type (List(NonNegativeInteger), Vector(
Float)) ‑> Vector(Float)

[0.3783057025_2024008245, 0.6305095042_0040013742, 0.0]
Type: Vector(Float)

The electric field for the Qb’s position r in the v inertial frame, which is not used right away
but is needed later, is stored in ev.

In the v inertial frame, since Qa is stationary, there is no magnetic field by Qa, and in the u
inertial frame, since Qb is stationary, it is not affected by any magnetic field. However, in the
stationary inertial frame, there is a magnetic field and it is affected, so it must be calculated.
The magnetic field calculation uses the B⃗ = r̂

c × E⃗ obtained when working with Feynman’s
formula earlier. Since the electric field is known, r̂must be calculated, r̂τ will be used here. To
do this, it is necessary to know the distance vector r⃗τ of the electric field reaching Qb at the
speed of light in a stationary inertial frame. For the calculation, I will start by first finding the
time required for the electric field to reach Qb from the origin.
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Figure 85: The origin calculation

If h is the height of the vertical line drawn from the position of Qb to the axis of motion of
Qa, and l is the distance between the point where the line meets the axis of motion and the
coordinate origin, that is, the current position of Qb, then if the distance through which the
electric field is transmitted is ct, then we can know that c2t2 = (vt + l)2 + h2. By solving this
quadratic equation for t, it is

c2t2 = (vt+ l)2 + h2

= v2t2 + 2lvt+ l2 + h2

(c2 − v2)t2 − 2lvt− (l2 + h2) = 0

t =
2lv±
√

4l2v2+4(c2−v2)(l2+h2)

2(c2−v2)

= γ2

2c2

(
2lv ± 2

√
l2v2 + c2 l

2+h2

γ2

)
= γ2

c2

(
lv +

√
l2v2 + c2p2

γ2

)
Since t is meaningful only when it is positive, only the + root is used. The + root is always

positive. Entering this formula is

(42) ‑> l := dX(p,v)
sq(v) v

[0.36, 0.0, 0.0]

Type: Vector(Float)

l is the position l⃗ = (p⃗ · v̂)v̂ at which the perpendicular at the p position meets the v axis
of motion. Since already know the location of p, there is no need to find h separately. If t is
calculated using this value of l, it is

(43) ‑> t := Gm(v,c)2

c2

(
dX(l, v) +

√
dX(l, v)2 + c2 sq(p)

Gm(v,c)2

)
2.7436506316_15100157

Type: Float
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Next, r⃗τ can be simply obtained as v⃗t+ p⃗. store this in o.

(44) ‑> o := p + tv
[2.5549205052_920801256, 1.0, 0.0]

Type: Vector(Float)

And, since it is r̂τ = r⃗τ√
r⃗τ ·r⃗τ

, I will compute it and store it in ro.

(45) ‑> ro := 1√
sq(o)

o

[0.9312120413_0428202934, 0.3644778925_1189452594, 0.0]
Type: Vector(Float)

Now, the electric andmagnetic fields and the induced electric force components acting on
the stationary inertial frame criterion Qb can be completely calculated.

(46) ‑> 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
[0.0490284190_4662311468_5, 0.1361900529_0728642968,−0.0522969803_1639798899_8]

Type: Vector(Float)

This is the calculation of 1
γu

(
E⃗p + u⃗×

(
r̂τ
c × E⃗p

)
− u⃗

c2
(u⃗ · E⃗p)

)
, assuming that the charge of

Qb and all related constants are 1, this is the acceleration of Qbmeasured in a stationary iner‑
tial frame. E⃗p is the termdue to the electric field, u⃗×

(
r̂τ
c × E⃗p

)
is the termdue to themagnetic

field, and− u⃗
c2
(u⃗ · E⃗) is the induced term.

Meanwhile,

(47) ‑> A (ed, u, c) Cannot compile map: Gm
We will attempt to interpret the code.

[0.0490284190_4662311468_3, 0.1361900529_0728642968,−0.0522969803_1639798899_6]
Type: Vector(Expression(Float))

In this calculation, ed is the electric field applied to Qb in u inertial frame. Since the rest
mass of Qb is 1, this is the acceleration received byQb in the u inertial frame. This acceleration
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is converted into acceleration in the stationary inertial system through the A function, which
implements the a⃗ = 1

γ2

(
a⃗′ + 1−γ

γ (⃗a′ · v̂)v̂
)
conversion as a function.

(48) ‑>A(ed, u, c)− 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
[−0.1E − 20,−0.8E − 21, 0.1E − 20]

Type: Vector(Expression(Float))

Comparing the two accelerations by subtraction,

1

γ2u

(
E⃗d +

1− γu
γu

(E⃗d · û)û
)
− 1

γu

(
E⃗p + u⃗×

(
r̂τ
c
× E⃗p

)
− u⃗

c2
(u⃗ · E⃗p)

)
= 0

, it confirms that they are exactly equal.

Let’s compare it at other arbitrary positions and velocities. We can run the entire process
at once,

(49) ‑> digits (20) ;
c := 1 ;
r := vector [0.6, 1.0, ‑ 0.9] ;
d := vector [0.3, ‑ 0.4, 0.5] ;
v := vector [0.2, 0.3, 0.2] ;
u := U (v, d, c) ;
Λv := eval

(
ΛM,

[
βx = v.1

c , βy = v.2
c , βz =

v.3
c

])
;

Λd := eval
(
ΛM,

[
βx = d.1

c , βy = d.2
c , βz =

d.3
c

])
;

i Λu := eval
(
ΛM,

[
βx = −1u.1

c , βy = −1u.2
c , βz = −1u.3

c

])
;

ΛR := iΛuΛvΛd;

r ΛR := ΛdΛviΛu;

rM :=

 ΛR(2, 2) ΛR(2, 3) ΛR(2, 4)

ΛR(3, 2) ΛR(3, 3) ΛR(3, 4)

ΛR(4, 2) ΛR(4, 3) ΛR(4, 4)

 ;

rrM :=

 rΛR(2, 2) rΛR(2, 3) rΛR(2, 4)

rΛR(3, 2) rΛR(3, 3) rΛR(3, 4)

rΛR(4, 2) rΛR(4, 3) rΛR(4, 4)

 ;

id := ‑ rM d ;
dr := rr (id, rM r, c) ;
ed := E (dr, id, c) ;
p := rr (v, r, c) ;

323



ep := E (p, v, c) ;
ev := E (r, [0, 0, 0], c) ;
l := dX(p,v)

sq(v) v ;
t := Gm(v,c)2

c2

(
dX(l, v) +

√
dX(l, v)2 + c2 sq(p)

Gm(v,c)2

)
;

o := p + tv ;
ro := 1√

sq(o)
o ;

A(ed, u, c)− 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
[−0.4E − 21, 0.8E − 21, 0.8E − 21]

Type: Vector(Expression(Float))

It confirms that the two forces are completely equal even in other positions and directions.

(50) ‑> digits (200) ;
c := 1 ;
r := vector [0.6, 1.0, 1.7] ;
d := vector [0.02, 0.4, 0.7] ;
v := vector [0.8, 0.2, 0.1] ;
u := U (v, d, c) ;
Λv := eval

(
ΛM,

[
βx = v.1

c , βy = v.2
c , βz =

v.3
c

])
;

Λd := eval
(
ΛM,

[
βx = d.1

c , βy = d.2
c , βz =

d.3
c

])
;

i Λu := eval
(
ΛM,

[
βx = −1u.1

c , βy = −1u.2
c , βz = −1u.3

c

])
;

ΛR := iΛuΛvΛd;

r ΛR := ΛdΛviΛu;

rM :=

 ΛR(2, 2) ΛR(2, 3) ΛR(2, 4)

ΛR(3, 2) ΛR(3, 3) ΛR(3, 4)

ΛR(4, 2) ΛR(4, 3) ΛR(4, 4)

 ;

rrM :=

 rΛR(2, 2) rΛR(2, 3) rΛR(2, 4)

rΛR(3, 2) rΛR(3, 3) rΛR(3, 4)

rΛR(4, 2) rΛR(4, 3) rΛR(4, 4)

 ;

id := ‑ rM d ;
dr := rr (id, rM r, c) ;
ed := E (dr, id, c) ;
p := rr (v, r, c) ;
ep := E (p, v, c) ;
ev := E (r, [0, 0, 0], c) ;
l := dX(p,v)

sq(v) v ;
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t := Gm(v,c)2

c2

(
dX(l, v) +

√
dX(l, v)2 + c2 sq(p)

Gm(v,c)2

)
;

o := p + tv ;
ro := 1√

sq(o)
o ;

A(ed, u, c)− 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
[0.3E − 201,−0.3E − 201,−0.1E − 202]

Type: Vector(Expression(Float))

Even if increase the calculation precision to 200 digits with other values, we can confirm
that it matches exactly up to that limit.

(51) ‑> digits (20) ;
c := 1 ;
r := vector [‑ 0.6, 1.0, ‑ 0.7] ;
d := vector [‑ 0.02, 0.4, ‑ 0.5] ;
v := vector [0.7, ‑ 0.3, 0.1] ;
u := U (v, d, c) ;
Λv := eval

(
ΛM,

[
βx = v.1

c , βy = v.2
c , βz =

v.3
c

])
;

Λd := eval
(
ΛM,

[
βx = d.1

c , βy = d.2
c , βz =

d.3
c

])
;

i Λu := eval
(
ΛM,

[
βx = −1u.1

c , βy = −1u.2
c , βz = −1u.3

c

])
;

ΛR := iΛuΛvΛd;

r ΛR := ΛdΛviΛu;

rM :=

 ΛR(2, 2) ΛR(2, 3) ΛR(2, 4)

ΛR(3, 2) ΛR(3, 3) ΛR(3, 4)

ΛR(4, 2) ΛR(4, 3) ΛR(4, 4)

 ;

rrM :=

 rΛR(2, 2) rΛR(2, 3) rΛR(2, 4)

rΛR(3, 2) rΛR(3, 3) rΛR(3, 4)

rΛR(4, 2) rΛR(4, 3) rΛR(4, 4)

 ;

id := rM ‑ d ;
dr := rr (id, rM r, c) ;
ed := E (dr, id, c) ;
p := rr (v, r, c) ;
ep := E (p, v, c) ;
ev := E (r, [0, 0, 0], c) ;
l := dX(p,v)

sq(v) v ;
t := Gm(v,c)2

c2

(
dX(l, v) +

√
dX(l, v)2 + c2 sq(p)

Gm(v,c)2

)
;

o := p + tv ;
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ro := 1√
sq(o)

o ;

A(ed, u, c)− 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
[0.8E − 21,−0.8E − 21, 0.8E − 21]

Type: Vector(Expression(Float))

Tried another value once more.

And, the acceleration in the u inertial system was converted to the stationary inertial sys‑
tem and compared, but the opposite direction is also possible.

(53) ‑> A (ed, u, c) ‑ (ep+ 1
c cX(u, cX(ro, ep))− 1

c2
udX(ep, u)

)
1

Gm(u,c) ,

ed ‑ rA
((

ep+ 1
c cX(u, cX(ro, ep))− 1

c2
udX(ep, u)

)
1

Gm(u,c) , u, c
)

Cannotcompilemap : Gm

Wewill attempt to interpret the code.

[[0.8E − 21, 0.2E − 20, 0.0], [0.8E − 21, 0.2E − 20, 0.2E − 20]]

Type: Tuple(Vector(Expression(Float)))

The conversion between the u inertial system and the stationary inertial systemwas com‑
pared in both directions, and both directionswere 0 to confirm that therewas no abnormality.

(54) ‑> rM rA
(

1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
, d, c

)
− ed,

rrMA(ed, id, c)− 1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
[[−0.2E − 20,−0.7E − 20,−0.5E − 20], [−0.3E − 20, 0.8E − 20, 0.0]]

Type: Tuple(Vector(Expression(Float)))

Theconversion relationshipbetweenv inertial systemandu inertial systemwascompared.
In v inertial system,Qa is stationary and there is nomagnetic field, soonly the inducedacceler‑
ation term was entered. When converting between two inertial frames, Wigner rotation must
be taken into account.\$\

(55) ‑> rM rA
(

1
Gm(d,c)

(
ev + 1

c cX(v, cX(r, ev))− 1
c2
ddX(ev, d)

)
, d, c

)
− ed,

1
c cX(v, cX(r, ev))

[[−0.2E − 20,−0.7E − 20,−0.5E − 20], [0.0, 0.0, 0.0]]

Type: Tuple(Vector(Expression(Float)))
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Since the force term 1
c cX(v, cX(r, ev)) due to the magnetic field is 0, it can be omitted.

Below is the bilateral transformation between the v inertial frame and the resting inertial
frame, which is the most complex because it goes through the u inertial frame.

(56) ‑> A
(
rMrA

(
1

Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
, d, c

)
, u, c

)
‑ (ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
1

Gm(u,c) ,

rrM A
(
rA
((

ep+ 1
c cX(u, cX(ro, ep))− 1

c2
udX(ep, u)

)
1

Gm(u,c) , u, c
)
, id, c

)
‑ 1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
[[−0.8E − 21,−0.3E − 20,−0.3E − 20], [−0.4E − 20, 0.8E − 20,−0.2E − 20]]

Type: Tuple(Vector(Expression(Float)))

Using the dA function, which implements the more general acceleration conversion for‑
mula a⃗ = 1

γ2
(
1+ v⃗·u⃗′

c2

)3

((
1 + v⃗·u⃗′

c2

)
a⃗′ − v⃗·⃗a′

c2
u⃗′ − γ−1

γ
a⃗′·v⃗
v2

v⃗
)
presented previously, conversion can

be done directly without going through the u inertial frame. The inverse conversion of the dA
conversion function requires only changing the sign of v and entering u instead of u′ in d, so
there is no need to define it separately.

(57) ‑>dA
(

1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
, v, d, c

)
− 1

Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
Cannot compile map: Gm
We will attempt to interpret the code.

[0.8E − 20,−0.2E − 20,−0.8E − 20]

Type: Vector(Float)

Of course, the same is true when comparing the value converted from the acceleration in
the u inertial frame to the stationary inertial frame and the value directly converted to the sta‑
tionary inertial frame from the acceleration observed in the v inertial frame.
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(58) ‑> A (ed, u, c) ‑ dA
(

1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
, v, d, c

)
[0.0, 0.3E − 20, 0.8E − 20]

Type: Vector(Expression(Float))

The relationship between the acceleration conversion formula A, its inverse conversion
formula rA, and the more general acceleration conversion formula dA is as follows.

(59) ‑> A (ed, u, c) ‑ dA (ed, u, vector [0, 0, 0], c),
rA
(

1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
, u, c

)
‑ dA

(
1

Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
,−u, u, c

)
[[0.0, 0.0, 0.0], [−0.2E − 20,−0.3E − 20,−0.3E − 20]]

Type: Tuple(Vector(Expression(Float)))

The direct conversion formula dA can be employed to directly transfer and compare the
acceleration in the inertial frame v to the stationary inertial frame. Conversely, it can also be
used to transfer the acceleration in the stationary inertial frame to the inertial frame v and
compare it.

(60) ‑> dA
(

1
Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
, v, d, c

)
− 1

Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

),
dA
(

1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

)
,−v, u, c

)
− 1

Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

)
[[0.8E − 21,−0.2E − 20,−0.8E − 21], [−0.8E − 21, 0.3E − 20, 0.0]]

Type: Tuple(Vector(Float))

The acceleration received by the charge Qb due to the electromagnetic field observed in
each of the three inertial systems is different because the electromagnetic fields and the in‑
ertial masses of Qb in the three inertial systems are all different. However, when that accel‑
eration is relativistically converted to another inertial system, that is, when the acceleration
is observed in another inertial system, it is confirmed that it is always consistent with the ac‑
celeration received by Qb due to the electromagnetic field in its own inertial system. These
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results show that the expression of the electromagnetic field is relativistically consistent.

Let the acceleration of Qb observed in a stationary inertial frame be

a⃗r =
1

γu

(
E⃗p + u⃗× B⃗p −

u⃗

c2
(u⃗ · E⃗p)

)
, the acceleration of Qb observed in a v inertial frame be

a⃗v =
1

γd

(
E⃗v −

d⃗

c2
(d⃗ · E⃗v)

)

, and the acceleration of Qb observed in a u inertial frame be

a⃗u = E⃗d

. And, given the acceleration conversion formula

A(⃗a, u⃗, c) =
1

γ2u

(
a⃗+

1− γu
γu

(⃗a · u⃗)u⃗
)

, the inverse conversion formula

rA(⃗a, u⃗, c) = γ2u(⃗a+ (γu − 1)(⃗a · u⃗)u⃗)

, and the direct acceleration conversion formula

dA(⃗a, u⃗, d⃗, c) =
1

γ2u

(
1 + u⃗·d⃗

c2

)3
((

1 +
u⃗ · d⃗
c2

)
a⃗− a⃗ · u⃗

c2
d⃗− γu − 1

γu

a⃗ · u⃗
u2

u⃗

)

, the relationship between each acceleration can be summarized in the acceleration conver‑
sion formulas as follows. Additionally, rM and rrM represent the Wigner rotation matrix and
its inverse rotation matrix, respectively.

(61) ‑> ar := 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

),
av := 1

Gm(d,c)

(
ev − 1

c2
ddX(ev, d)

),
au := ed

[[0.1505706189_0053737395, 0.2778490282_0134569344, 0.1873977469_020411621],
[0.2363192506_84838996, 0.3909135356_617518724,0.2767389512_1685508766],
[0.2277506744_1102550144, 0.4056332444_851947955, 0.2772075752_01946528]]

Type: Tuple(Vector(Expression(Float)))
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(62) ‑> A (au, u, c) ‑ ar = dA (au, u, vector [0, 0, 0], c) ‑ ar,
A (rM rA (av, d, c), u, c) ‑ ar = dA (av, v, d, c) ‑ ar,
rA (ar, u, c) ‑ au = dA (ar, ‑ u, u, c) ‑ au,
rM rA (av, d, c) ‑ au = rM dA (av, ‑ d, d, c) ‑ au,
dA (dA (av, v, d, c), ‑ u, u, c) ‑ au,
rrM A (au, ‑ rM d, c) ‑ av = rrM dA (au, ‑ rM d, vector [0, 0, 0], c) ‑ av,
dA (dA (au, u, vector [0, 0, 0], c), ‑ v, u, c) ‑ av,
rrM A (rA (ar, u, c), ‑ rM d, c) ‑ av = dA (ar, ‑ v, u, c) ‑ av
[[0.8E−21, 0.2E−20, 0.0] = [0.8E−21, 0.2E−20, 0.0], [−0.8E−21,−0.3E−20,−0.3E−20] =

[0.8E − 21,−0.2E − 20,−0.8E − 21], [−0.8E − 21,−0.2E − 20,−0.2E − 20] = [0.8E − 21, 0.2E −
20, 0.2E − 20], [−0.2E − 20,−0.7E − 20,−0.5E − 20] = [0.0,−0.3E − 20,−0.3E − 20], [0.4E −
20,−0.2E − 20, 0.0], [−0.3E − 20, 0.8E − 20, 0.0] = [−0.3E − 20, 0.8E − 20, 0.0], [0.8E − 21, 0.5E −
20, 0.0], [−0.4E − 20, 0.8E − 20,−0.2E − 20] = [−0.8E − 21, 0.3E − 20, 0.0]]

Type: Tuple(Any)

a⃗r = A(⃗au, u⃗, c) = dA(⃗au, u⃗, 0, c)

a⃗r = A(rMrA(⃗av, d⃗, c), u⃗, c) = dA(⃗av, v⃗, d⃗, c)

a⃗u = rA(⃗ar, u⃗, c) = dA(⃗ar,−u⃗, u⃗, c)
a⃗u = rMrA(⃗av, d⃗, c) = rMdA(⃗av,−d⃗, d⃗, c)

= dA(dA(⃗av, v⃗, d⃗, c),−u⃗, u⃗, c)
a⃗v = rrMA(⃗au,−rMd⃗, c) = rrMdA(⃗au,−rMd⃗, 0, c)

= dA(dA(⃗au, u⃗, 0, c),−v⃗, u⃗, c)
a⃗v = rrMA(rA(⃗ar, u⃗, c),−rMd⃗, c) = dA(⃗ar,−v⃗, u⃗, c)

And, through these processes, in order to consistently describe the field described by the
potential theory relativistically, it was proved that the induced acceleration according to the
− u⃗

c2
(u⃗ · E⃗) term, and the force u⃗×

(
r̂τ
c × E⃗

)
due to the magnetic field, must exist.

By the way, I just realized that I overlooked something. When calculating the electromag‑
netic field, I only addressed the case where Qa undergoes uniform rectilinear motion and did
not consider cases involving accelerated motion. It would be beneficial to address and sup‑
plement this aspect before moving forward.

The formula for the electric field to account for accelerated motion can no longer use the
Purcell formula, instead, it should adopt the practical form of the Feynman formula,

E⃗ =
qa

4πε0r2
(
1 + ṙ

c

)3 ((1− v2

c2
+

a⃗ · r⃗
c2

)(
r̂ − v⃗

c

)
−
(
1 +

ṙ

c

)
ra⃗

c2

)
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This should be Prepared as a function, excluding all constant terms, and then input it as
needed.

(63) ‑> Ea (r, v, a, c) ==
1

sq(r)

(
1− dX(v,r)

c
√

sq(r)

)3

((
1− sq(v)

c2
+ dX(a,r)

c2

)(
1√
sq(r)

r − 1
cv

)
−
(
1− dX(v,r)

c
√

sq(r)

) √
sq(r)

c2
a

)
Type: Void

And then input the process of calculating the electric fields.

(64) ‑> digits (20) ;
c := 2 ;
r := vector [0.6, 1.0, 0.7] ;
d := vector [0.02, 0.1, 0] ;
v := vector [‑ 0.5, 0.2, ‑ 0.1] ;
u := U (v, d, c) ;
Λv := eval

(
ΛM,

[
βx = v.1

c , βy = v.2
c , βz =

v.3
c

])
;

Λd := eval
(
ΛM,

[
βx = d.1

c , βy = d.2
c , βz =

d.3
c

])
;

Λu := eval
(
ΛM,

[
βx = u.1

c , βy = u.2
c , βz =

u.3
c

])
;

i Λu := eval
(
ΛM,

[
βx = −1u.1

c , βy = −1u.2
c , βz = −1u.3

c

])
;

ΛR := iΛuΛvΛd;

r ΛR := ΛdΛviΛu;

rM :=

 ΛR(2, 2) ΛR(2, 3) ΛR(2, 4)

ΛR(3, 2) ΛR(3, 3) ΛR(3, 4)

ΛR(4, 2) ΛR(4, 3) ΛR(4, 4)

 ;

rrM :=

 rΛR(2, 2) rΛR(2, 3) rΛR(2, 4)

rΛR(3, 2) rΛR(3, 3) rΛR(3, 4)

rΛR(4, 2) rΛR(4, 3) rΛR(4, 4)

 ;

id := rM ‑ d ;
dr := rr (id, rM r, c) ;
p := rr (v, r, c) ;
l := dX(p,v)

sq(v) v ;
t := Gm(v,c)2

c2

(
dX(l, v) +

√
dX(l, v)2 + c2 sq(p)

Gm(v,c)2

)
;

o := p + tv ;
ro := 1√

sq(o)
o ;

aqv := vector [0.2, 0.1, ‑ 2.3],
aqd := A (rM aqv, id, c),
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aqp := A (aqv, v, c),
ep := Ea (o, v, aqp, c) ;
ev := Ea (r, vector [0, 0, 0], aqv, c) ;
tmp := Λutranspose([cons(ct, o)]);

ed := Ea ([tmp (2, 1), tmp (3, 1), tmp (4, 1)], id, aqd, c) ;
Cannot compile map: sq

We will attempt to interpret the code.

Type: Vector(Expression(Float))

The additional elements are, first, the Lorentz transformation matrix
Λu := eval

(
ΛM,

[
βx = u.1

c , βy = u.2
c , βz =

u.3
c

]) for the transformation to the u inertial frame.
Next,

aqv := vector [0.2, 0.1, ‑ 2.3],
aqd := A (rM aqv, id, c),
aqp := A (aqv, v, c),

the acceleration aqv of Qb in the v inertial frame is the information of the electromagnetic
field affecting the motion of Qa at the moment under consideration. aqd is the value of this
acceleration when observed in the u inertial frame. Wigner rotation is applied. aqp is the ac‑
celeration of Qa as seen from the rest inertial frame.

ep := Ea (o, v, aqp, c);
ev := Ea (r, vector [0, 0, 0], aqv, c);

Using the Feynman formula, the electric fields in the stationary inertial frame and the v
inertial frame are calculated. o is the path vector fromQa, where the electric field information
originates, to Qb. In the v inertial frame, it is simply r.

tmp := Λutranspose([cons(ct, o)]);
ed := Ea([tmp(2, 1), tmp(3, 1), tmp(4, 1)], id, aqd, c);

By Lorentz‑transforming owithΛ u, the spatial components can be extracted, allowing the
determination of the distance vector in the u inertial frame. The velocity of Qa in the u inertial
frame at the moment when the electric field information departs is id.
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(65) ‑> ar := 1
Gm(u,c)

(
ep+ 1

c cX(u, cX(ro, ep))− 1
c2
udX(ep, u)

),
av := 1

Gm(d,c)

(
ev + 1

c cX

(
d, cX

(
1√
sq(r)

r, ev

))
− 1

c2
ddX(ev, d)

)
,

au := ed
[[0.1061811242_9138400705, 0.2239412002_4608670304, 0.5380086502_1665292439],
[0.1194845433_8388336285, 0.2397685784_157310356, 0.5854368139_6836798568],
[0.1183498170_446227071, 0.2422921291_332650608, 0.5866247876_5702919082]]

Type: Tuple(Vector(Expression(Float)))

ar represents the acceleration experienced by Qb in the stationary inertial frame due to
the electromagnetic field. av is the acceleration experienced by Qb in the v inertial frame due
to the electromagnetic field. Unlike when Qa is moving at a constant velocity, in the case of
Qa’s accelerated motion, there is a magnetic field due to this acceleration that must be taken
into account. au is the acceleration experienced by Qb due to the electric field in the u inertial
frame. In the u inertial frame, Qb is at rest, so there is no need to consider magnetic fields or
induced accelerations.

(66) ‑> A (au, u, c) ‑ ar = dA (au, u, vector [0, 0, 0], c) ‑ ar,
A (rM rA (av, d, c), u, c) ‑ ar = dA (av, v, d, c) ‑ ar,
rA (ar, u, c) ‑ au = dA (ar, ‑ u, u, c) ‑ au,
rM rA (av, d, c) ‑ au = rM dA (av, ‑ d, d, c) ‑ au,
dA (dA (av, v, d, c), ‑ u, u, c) ‑ au,
rrM A (au, ‑ rM d, c) ‑ av = rrM dA (au, ‑ rM d, vector [0, 0, 0], c) ‑ av,
dA (dA (au, u, vector [0, 0, 0], c), ‑ v, u, c) ‑ av,
rrM A (rA (ar, u, c), ‑ rM d, c) ‑ av = dA (ar, ‑ v, u, c) ‑ av
[[−0.3E−20,−0.8E−21,−0.3E−20] = [−0.3E−20,−0.8E−21,−0.3E−20], [0.2E−20, 0.5E−

20, 0.7E − 20] = [−0.4E − 21, 0.8E − 21, 0.0], [0.3E − 20, 0.0, 0.3E − 20] = [0.6E − 20, 0.4E −
20, 0.1E−19], [0.6E−20, 0.7E−20, 0.1E−19] = [0.6E−20, 0.7E−20, 0.7E−20], [0.6E−20, 0.6E−
20, 0.1E−19], [−0.4E−20,−0.4E−20,−0.1E−19] = [−0.4E−20,−0.4E−20,−0.1E−19], [−0.4E−
20,−0.3E−20,−0.1E−19], [−0.8E−21,−0.4E−20,−0.7E−20] = [−0.4E−21,−0.2E−20,−0.3E−
20]]

Type: Tuple(Any)

I checked all possible transformations of acceleration between different inertial frames at
once and confirmed that they all cancel out.
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