
all other principles. Making and attaching a reason as such a cumbersome name like bizarre
space here is an unnecessary act to satisfy human psychological vanity, and it is not at all an
attitude to face and appreciate nature as it is. There is no reason here, and no understanding
is needed. This is just the truth of this universe we have to accept. Life doesn’t disappear just
because there’s no reason for life, or because we don’t understand it. Life flows regardless
of reason or understanding. So is the existence of nature. Own understanding is only up to
each person, and the essence is beyond the phenomenon of understanding or transmission
of understanding through language. However, which can only be different is whether we are
seeing exactly what is actually happening or not. I introduce as an example the concept of
the relative view of a circle and an ellipse as a very good tool for analyzing events from that
perspective.

Using this, l will first find the traditional Lorentz transformation.

2.2 Lorentz Transformation

Figure 42: The Lorentz transformation

The Lorentz transformation can be expressed as shown in the figure above. Specifically,
I described the Is inertial system with Is as the center all the time, and the inertial system Io
with relative velocity v = βcwhose center coincided at Is at time 0 andwhose center shifted to
Io separated by 2βct√

1−β2
at time 2t√

1−β2
. Let us think of these events, whenmirrors are arranged

in a circle around Is, light shines on the surrounding mirrors from the central focus Is of the
circle at time 0, and the lights are reflected back to the central focus at the same time t. Let
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us call these events Es1 and Es2, and think of the events of lights converging to the center
again at 2t. If all these events are observed in the Io inertial frame, the rays departing from
one focal point of the ellipse at time 0, Io, are respectively reflected back through different
times events Eo1 and Eo2, which exist on the ellipse, and we shall observe the event converg‑
ing again at the other focus Is of the ellipse at time 2t√

1−β2
. In other words, as shown in the

Lorentz transformation figure above, it is the Lorentz transformation geometrically described
to change events observed in the Is inertial frame into events observed in the Io inertial frame.

Using this to derive the traditional Lorentz transformation, since the equation of the el‑
lipse in the general form is R = a 1−e2

1−e cos(θ) = A
2

1− f2

A2

1− f
A

cos(θ) and since A = 2ct√
1−β2

, f = 2βct√
1−β2

, so
the equation of the ellipse in which the events Eo are located in the Is inertial frame can be
calculated using

Rθo =
ct√
1− β2

1− β2

1 + β cos θo
in polar coordinates. First, enter this basic expression into firCAS.

(5)− >Rθo := ct√
1−β2

1−β2

1+β cos(θo)
−ctβ2+ct

(β cos(θo)+1)
√

−β2+1

Type: Expression(Integer)

To find the relationship between θo and θs by using the fact that the Y‑axis positions h of
the events Eo and Es do not change in both inertial frames, we can enter a command to solve
equationRθo sin(θo) = ct sin(θs) for θo in CAS as follows.

(6)− >solve(Rθo sin(θo) = ct sin(θs), θo)
[θo = −2atan(

√
−β2+1

(β−1) tan( θs
2
)
), θo = −2atan( tan(

θs
2
)
√

−β2+1

β−1 )]

Type: List(Equation(Expression(Integer)))

Since the cosine form is easier to handle than the tangent form in the result, the equation
is modified and re‑entered.

(7)− >solve
(
Rθo

√
1− cos(θo)2 = ct

√
1− cos(θs)2, θo

)
[θo = acos(− cos(θs)+β

β cos(θs)−1 ), θo = acos(− cos(θs)−β
β cos(θs)+1 )]

Type: List(Equation(Expression(Integer)))

Two solutions are computed, but the left one will be selected because it fits the definition
of the Lorentz transformation figure above. The solution on the right is a figure in which the
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left and right are reversed.

cos(θo) = cos(θs)− β

1− β cos(θs)
The transformationof the space‑timecoordinates ct andXsof Es in the inertial frame Is into

the space‑time coordinates Rθo and Xo of the events Eo in the inertial frame Io is the Lorentz
transformation in the time and X axes, respectively. Since Rθo is the distance that light trav‑
els in an ellipse, it is ct’ of Eo’s in a moving inertial frame. To substitute the above expression
here, use the substitution or substitution command ’eval’ or ’subst’ to change the cos(θo) part
of the Rθo expression to cos(θs)−β

1−β cos(θs) using θs.

(8)− >eval
(
Rθo, cos(θo) = cos(θs)−β

1−β cos(θs)
)

−ctβ cos(θs)+ct√
−β2+1

Type: Expression(Integer)

According to the Lorentz transformation figure,Xs = ct cos(θs)→ cos(θs) = Xs
ct , and sub‑

stitute it into the above result. The ’%’ symbol in the input means that the previous result is
the corresponding input.

(9)− >eval
(%, cos(θs) = Xs

ct

)
−Xsβ+ct√

−β2+1

Type: Expression(Integer)

This is theLorentz transformation regarding time. However, CASprograms still have limita‑
tionswhen it comes to formatting such expressions neatly. Therefore, using β = v

c , γ = 1√
1−β2

,
and expressing ct′ = γct− γβxs is a more familiar expression.

I will now find the Lorentz transformation in the x‑direction. Since it isXo = Rθo cos(θo) in
the Lorentz transformation figure, applying the same substitution as in Calculation 8 here to
change the expression θo to the expression θs,
(10)− >eval

(
Rθo cos(θo), cos(θo) = cos(θs)−β

1−β cos(θs)
)

ct cos(θs)−ctβ√
−β2+1

Type: Expression(Integer)
If substitute cos(θs) = Xs

ct into the above result as in Calculation 9, changing the polar coordi‑
nate expression to a xy‑coordinate expression,
(11)− >Xo = eval

(%, cos(θs) = Xs
ct

)
Xo = −ctβ+Xs√

−β2+1

Type: Equation(Expression(Integer))
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This isXo = γXs−γβct, which confirms that it is a Lorentzian transformation about the X axis.

Therefore, it was confirmed that the Lorentz transformation can be obtained from the ge‑
ometrical expression of the relativity principle.

Now, through these calculations using ellipses, we can depict the expanding universe as
observed from the center of each primordial inertial system.

2.3 The universe viewed from other primordial inertial systems
Geometrically, a circle is a set of points that are at a constant distance from the center. How‑
ever, this is the case where both the center and the points at a certain distance are station‑
ary. In our real universe, the expanding universe, we have to find a way to define howmoving
points compose equal distances around some moving primordial inertial system points. In
this regard, the principle of relativity, which looks different in circles and ellipses depending
on the point of view, suggests the following method of defining distance.

Figure 43: The observed universe

As a new distance measurement method suitable for the moving dynamic universe, the
’distance measurement method by radar radio wave round‑trip time’ is possible. If the radar
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waves that simultaneously departed fromonepoint to twoplaces return at the same time, the
distances between the radar device and the two places can be said the same. This relation‑
ship can be used as it is in a moving inertial frame as well as in a stationary inertial frame. If
the events of measuring radio waves traveling two equal distances in this one inertial frame
are viewed in another inertial frame having a relative velocity, they’ll be seen as reflections at
different distances from the original focal point, and then, they’ll be seen as events that have
returned to the focal point that has reached a different location, since it alsomovedwhile the
radio waves travel. However, even in this case, the phenomenon that the two radio waves re‑
turn ’simultaneously’ to the starting focal point that has moved so far does not change. This
phenomenon can be used to define the same distance in different inertial systems. A set of
events that are neither simultaneous nor equidistant in this inertial system but simultaneous
and equidistant in that inertial system can be defined in this way, and it can be seen that they
form an ellipse.

Just since the outermost part of the universe is moving away at the speed of light from ev‑
ery observer looking from the center of anyprimordial inertial system, the light from there can
be thought of exactly the same as the case of radar reflection. Describing the outermost shell
of the universe as seen from different inertial systems in this way, is the same as the previous
’The observed Universe’ figure.

Let us consider a universewith an age of 1, a speed of light of 1, and a size of 1 that expands
around C, which will be called the observation center, one of the primordial inertial system
points in the universe. The outermost shell of the universe is expanding at the speed of light,
and the light observing this shell from the center at time 1will be the light that departed from
the outer shell, which is circular at time 1

2 and size 1
2 , toward the center. At this time, the cos‑

mic shell which is observed in another primordial inertial systemwith relative speed β with a
primordial inertial system C is as described in the figure of the observed universe. Since the
light of the cosmic shell that began to expand at the speed of light with the center as the fo‑
cus at time 0 was observed at another focus β, therefore, the shell of the universe fromwhich
lights simultaneously reached B forms an ellipse. In three‑dimensional space, it will be an el‑
lipsoid in the shape of a rugby ball. In this case, the sum of the distances from each focus of
the ellipse is r1+r2 = 1. If β = 0, the distance between the two focal points is 0, that is a circle,
r1 = r2 = 1

2 . The distance r, closer than the outermost, observed in the primordial inertial
systemβ, at time 1, from focus β, describing the space inside this cosmic shell, can be defined
using the following distance definition figure
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Figure 44: Definition of distance

In a universe of age 1, if we try to describe a value r smaller than 1which is inside the outer
shell of the universe, based on the β inertial system, it can be described as a set of points that
reflect the lights to convergewhen the lights departed from the β inertial systempoint located
at β(1 − r) at the time (1‑r), is reflected along the way, and return to converge β at the same
time at time 1. These points form an ellipse, and the equation of the ellipse describing it is

Rθ =
r

2

1− β2

1− β cos(θ)
This will be referred to as the observation ellipse.

In this equation, r represents the apparent distance observed in a primordial inertial sys‑
temand is a value corresponding to the ’angular diameter distance’ in general relativity‑based
cosmology. However, here, it is expressed as a relative ratio to the total size of the universe
rather than an absolute distance.

Using this, I will analyze the universe observed in the inertial system β. First, I will analyze
the age of each point in the universe located on the observation ellipse observed in the iner‑
tial systemβ. The self‑perceived age of the universe at all positions on the sameobservational
ellipse should be the same. I will check whether this expectation holds true.
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2.4 The age structure of the universe

Figure 45: Age Calculation

When a light departs frompoint P located at (Rθ, θ) to βwith respect to the inertial frameβ,
let us call this event P. At this time, the event P exists on a circle drawing a radius r

2γ with the
view of the β inertial frame. In addition, based on the observation center C inertial system, it
exists on an ellipse with major axis diameter r and points β(1‑r) and β as focal points. In this
case, the age of the universe around oneself felt at the event P is independent of the inertial
frame observing it, and is a unique age felt by itself.

To express this based on center C, we need to know the relative speed βp between the pri‑
mordial inertial system corresponding to the event point P and the observation center C of
the universe. When the speed of light is set to 1, its relative speed is the distance Rβ between
event P and observation center C divided by the size of the universe at that point in time. In
this case, since the speed of light is 1, the size of the universe is the time of the event P, Ts+Te.
It is

βp =
Rβ

Ts + Te

. At this time, Ts is the time when the β inertial system reaches the distance of β(1‑r) at the
speed of β, so it is β(1−r)

β . And, since P is a point on an ellipse with major axis diameter r, Te
satisfies r = Te +Rθ in terms of distance. In this case, the speed of light is assumed to be 1, so
the time Te = r−Rθ

c = r −Rθ.
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At this time, point P is moving away from point C at the speed of βp , so according to spe‑
cial relativity, time passes more slowly relatively than point C. Thus the age of the universe at
point P is

√
1− β2

p(Ts + Te)

In order to satisfy the uniformity and isotropy of the universe according to the cosmolog‑
ical principle, all P events with the same r and arbitrary θ constituting the celestial sphere
observed at an arbitrary β must all share the same proper age that felt by themselves.
x I will check if this holds. First, the definitions of all values in the age calculation figure are
arranged through the observed universe figure and the age calculation figure as described
previously and assigned to the firCAS variables. In the previous explanation, the transforma‑
tion of the P point position to xy coordinates was not discussed, but it will be used later, so it
will be input together.

(12)− > Rθ := r
2

1−β2

1−β cos(θ) ,
T s := β(1−r)

β ,

T e := r −Rθ,

x := β −Rθ cos(θ),
y := Rθ

√
1− cos(θ)2

[ rβ2−r
2β cos(θ)−2 ,−r + 1, 2rβ cos(θ)−rβ2−r

2β cos(θ)−2 ,

((−r+2)β2+r) cos(θ)−2β
2β cos(θ)−2 ,

(rβ2−r)
√

− cos(θ)2+1

2β cos(θ)−2 ]

Type: Tuple(Any)

Now, I will proceed to calculate the age equation for the universe.

Tomake it easier for automatic computation, Iwill use the form
√
(1− β2

p)(Ts + Te)2 instead
of
√
1− β2

p(Ts+Te). And, sinceR2
β = x2+ y2, it is β2

p =
(

Rβ

Ts+Te

)2
= x2+y2

(TS+Te)2
. Therefore, the final

form of the expression for the age of the universe at point P to be used is√(
1− x2 + y2

(Ts+ Te)2

)
(Ts+ Te)2

. The values necessary for the expression have been assigned to variables in previous Calcu‑
lation 12, so the calculation is performed automatically just by entering the corresponding
expression, and the calculation result of
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(13)− >

√(
1− x2+y2

(Ts+Te)2

)
(Ts+ Te)2√

(r − 1)β2 − r + 1

Type: Expression(Integer)
√

1− β2
√
1− r is obtained. Since this is a value dependent only on r and β, which is unre‑

lated to θ where the θ information that existed at the input time disappeared, it satisfies the
isotropy that the universe should be seen equally in all θ directions. In addition, this is the
age of the universe around it felt in all arbitrary primordial inertial systems β where time is
slowly flowing at the speed of

√
1− β2 . Therefore, all observers of the primordial inertial sys‑

tem β see the age of the universe in area r distance away from themselves as √1− r , which
is based on the standard of feeling that their own age is 1. And, this satisfies the uniformity
of theuniverse that theuniverse viewed fromall primordial inertial systemsmust be the same.

In the limited case of β = 0, the relationship between the distance r and the running away
speed βp can be obtained directly by calculating a different approach to the above. When
looking at the movement of βp, which departed from the observation center C at time 0, and
the movement of light that departed at the time (1 ‑ r), caught up with it, is reflected, and re‑
turned to the origin at time 1. Since the round‑trip time given for the light to catch up and
return was r, the time taken for βp to run before being caught up with the light was (1− r) + r

2 ,
and the time taken for the light to chase was r

2 , the equation can be set up as follows.

(14)− >solve
(
r
2 = βp

(
1− r + r

2

)
, βp
)

[βp = − r
r−2 ]

Type: List(Equation(Fraction(Polynomial(Integer))))

As the speed at some distance r is obtained, substituting this result into the well‑known
relativistic redshift formula for frequency,

√
1−βp
1+βp . By doing so, we obtain the rate at which

time passes at the point r as observed from C. Continuing to observe this until the age of the
universe at point C reaches 1 provides us with the proper age experienced by point r as ob‑
served from C. This gives the following,

(15)− >eval
(√

1−βp
1+βp ,%

)
√
−r + 1

Type: Expression(Integer)
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From this, it can be confirmed that the age obtained by different methods is the same for
observer C whose β is 0. In other words, it was confirmed that the two methods are not con‑
tradictory and that the result obtained by Calculation 13 is justified.

It is not enough for the universe to be uniform and isotropic with respect to characteris‑
tics of the proper age of the observed universe area, it also must be observed uniformly and
isotropically in the density of the universe that is gradually diminishing because of the expan‑
sion. Now that we know the proper age of the universe observed in every inertial system, we
can calculate the density distribution of the universe based on this.

2.5 Matter density distribution of the universe
First, let’s make an initial assumption. Classically, around the center of an expanding uni‑
verse, the particle density should decrease with time. This can be inferred because the radius
of the universe increases with time, and the volume of the universe, which is proportional to
the cube of the radius, should also increase. Therefore, the density would decrease inversely
with the cube of time. According to the assumption of the universe’s uniformity, this should
apply uniformly in all primordial inertial systems. However, since the age of the universe is
different in each primordial inertial system, the density at each point in the primordial iner‑
tial systems should be 1√

1−β2
3 when the density at the observation center C is 1. In addition,

since all primordial inertial systems are moving away from the observation center C with a
velocity β, the matter density at the center points of the other primordial inertial systems, as
observed fromC, should increase by a factor of 1√

1−β2
due to the length contraction in special

relativity. Therefore, the final density should be 1
(1−β2)2

. This consideration of length contrac‑
tion can also be inferred from the perspective that if the distance between two particles is L
when measured by an observer at rest, it should be L√

1−β2
when measured by the two parti‑

cles themselves.

This prediction can be verified by calculating it more rigorously in the following way.

To explain this method, first, it needs a concept that I call a normalized universe. As an
observer located at observation center C, if we look at the density ofmatter around us, wewill
see that the density decreases with time in the case of an expanding universe. Here, density
may be defined as the number of particles existing within a certain distance from the center.
However, the concept of a certain distance from the center may be an absolute distance, but
may also be a relative distance. In the case of a constant‑expanding universe, the radius r of
the universe will increase uniformly with time. In this case, if we set a distance of 1/n of r and
count the number of particles closer than that, the number of particles within that distance

101



will always be constant without changing with time. Here, I will call the universe where r is
always assumed to be 1 a normalized universe. At this time, according to the hypothesis of
uniformity among the cosmological principles, for any primordial inertial system, the num‑
ber of particles present in the same microscopic radius dr must be equal in the normalized
universe of that inertial system reference. If this is observed in some other primordial iner‑
tial system, the nearby primordial inertial systemmoving away from the observer slowly will
show similarmatter density to the observer, while the rapidlymoving awayprimordial inertial
system far from the observer will show an appearance from long ago and also the time delay
in special relativity will make it appear to have higher matter density. This is the calculation
to find the particle density distribution according to the phenomenon.

In the previous explanation of the age structure of the universe, I have shown that the
points forming the celestial sphere at a distance r, based on a certain primordial inertial sys‑
tem β, create an ellipsoid when observed from the center C. These points on the celestial
sphere of the β primordial inertial system represent a set of events where light is sent to β
points at different times, not simultaneously, when observed from the observation center C,
resulting in the formationof an ellipsoid. For now, Iwill refer to this as the ”ellipsoidof events.”
At this point, the overall size of the universe at the time of each event is also different. When
all these events are projected into the normalized universe, the major axis of the ellipsoid is
distorted into a more flattened disk shape. In this case, the compression ratio is not uniform
across different parts of the ellipsoid, but if we consider a fine dr as the radius of the celes‑
tial sphere, the compression ratio of the resulting disk can be considered relatively constant.
In the normalized universe, there is always the same number of particles within these micro‑
scopic spheres. Therefore, the particle distribution observed at center C will be directly pro‑
portional to the rate of shrinkage of these microscopic spheres. I will now proceed to project
these microscopic spheres from the β inertial system into the normalized universe based on
the observation center C.

First, I will transform themicrosphere in the β inertial system into an ellipsoid of events at
the C observation center. According to the age calculation figure, when θ is 0 and π, it is the
direction of motion in the β inertial system in the direction of the x‑axis, and when cos θ = β,
the y‑axis height of the ellipse becomes themaximumwhich is the height of theminor axis ra‑
dius of the ellipse. These will be referred to as an X‑axis direction radius and a Y‑axis direction
radius, respectively. When obtaining their projection into the normalized universe, regarding
the problem of deformation, as mentioned above, since it is a deformation in a microscopic
domain, the rate of distortion can be considered constant for all parts. So it is sufficient to
divide the position where the event occurred by the time the event occurred for the projec‑
tion of this ellipsoid onto the normalized universe. To extract the sizes of the compressed disk
shape after projection, in the x‑axis direction, subtract the smaller value from the larger nor‑
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malized value on the x‑axis. The y‑axis and z‑axis directions are the same and symmetrical, so
it is enough to double the radius of the disk. The x and y values of the ellipse required for this
calculation have already been entered in Calculation 12, so only the corresponding θ value
should be substituted here. This is expressed as a ratio with the original microsphere dr and
is as shown in the calculation below. Since we can use ’eval’ instead of ’limit’,

(16)− > eval
(
D
(
eval

(
x

Ts+Te , θ = 0
)
− eval

(
x

Ts+Te , θ = π
)
, r
)
, r = 0

)
,

eval
(
D
(
2eval

(
y

Ts+Te , θ = acos(β)
)
, r
)
, r = 0

)
[β2 − 1,

√
−β2 + 1]

Type: Tuple(Expression(Integer))

The result is a sphere squeezed by
√

1− β2 in both the y and z directions and by 1 − β2

in the x‑axis direction, and since there is the same number of particles as in the observation
center C in its volume, the density ratio with the observation center C is the same as before, it
can be confirmed that

1

(1− β2)2

. Now that we have established a plausible density distribution for the universe, it’s time to
examine whether this density distribution is observed to be the same not only at observation
center C but also at all the centers of primordial inertial systems β, andwhether it satisfies the
homogeneity and isotropy of the universe.

2.6 Confirmation of uniformity and isotropy of the universe
In order to confirm the uniformity and isotropy of the universe, what we actually need to look
at is whether the particle density formula of the universe observed on the celestial sphere at
a distance r from the center β of each primordial inertial system is a constant form in all pri‑
mordial inertial systems and whether it is an isotropic form that does not contain directional
components. To put this concretely, it is to verify whether the number of particles is a func‑
tion of only distance ro, regardless of the direction angles θo and Φo, in a small area with a
fine thickness of dro and fine widths of dθo and dφo, at a distance ro from the center point β
of an inertial system on the celestial sphere of β.
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Figure 46: Relative celestial sphere

First, it needs to define the observation ellipse. Since the used angle, θs is the angle based
on thecenterC inertial system, aprocessof converting it to theangleθo in theβ inertial system
is required. The observation ellipse, which was defined as Rθ = r

2
1−β2

1−β cos(θ) at the observation
center, is observed as a circle with radius r

2

√
1− β2 in the β inertial system. And as similar

work done in the Lorentz transformation derivation previously, it will use the point that the
y‑axis height h of the event is the same regardless of whether it is an ellipse or a circle. Thus,
θs on the observation ellipse (in actual calculations, it is expressed as θ) is converted into an
expression of θo in the β inertial frame. This is similar to the calculation of correcting the ve‑
locity aberration of the light.

(17)− >solve
(
Rθ
√
1− cos(θ)2 = r

2

√
1− β2

√
1− cos(θo)2, θ

)
[θ = acos( cos(θo)+β

β cos(θo)+1), θ = acos( cos(θo)−β
β cos(θo)−1)]

Type: List(Equation(Expression(Integer)))

Theequationon the left is consistentwith thedefiningfigureof the relativecelestial sphere,
but when θ=0, r is directed in the ‑X direction, so the value of the determinant to be calculated
later has a correct magnitude but a negative sign, so instead of multiplying by ‑1 at the end.
With the equation on the right where the value is the same and the sign is reversed, I will con‑
vert Ts + Te, x, y, etc. of Calculation 12 in the age structure of the universe into the form using
θo, and input.
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(18)− > eq := θ = acos
(

β−cos(θo)
1−β cos(θo)

)
,

T o := Ts+ eval(Te, eq),

xo := eval(x, eq),

eval(y, eq) = r
2

√
1− β2

√
1− cos(θo)2,

yo := r
2

√
1− β2

√
1− cos(θo)2

[θ = acos( cos(θo)−β
β cos(θo)−1),

rβ cos(θo)−r+2
2 , r cos(θo)+(−r+2)β

2 ,

(−rβ cos(θo)+r)

√
(β2−1) cos(θo)2−β2+1

β2 cos(θo)2−2β cos(θo)+1

2 =
r
√

−β2+1
√

− cos(θo)2+1

2 ,
r
√

−β2+1
√

− cos(θo)2+1

2 ]

Type: Tuple(Any)

Since I am going to find the density, the volume element must be defined. In polar coor‑
dinates, θo is usually used as latitude, but here, latitude is given to φo, which will be used
only once as the value of 0 near the equator. φo is the same as φ. Since it is near the equa‑
tor, cos(φo)=1, whichmakes the calculation easier. In order to find themicro volume element
based on the C inertial system,which is the formof dr×r×cos(ϕ)×dθ×r×dϕ→ r2drdθodϕo in
the β inertial system, I will enlarge the vicinity of point P on the relative celestial sphere figure.
Point P is expressed as R⃗(r, θ) from β to P.

Figure 47: Enlarged P‑point

Since it is a small area of an ellipse rather than a circle, simple definitions such as dr, rdθo,
and rdφo that are orthogonal to each other cannot be seen, but instead, definitions such as
R⃗(r + dr, θ) − R⃗(r, θ) = dR⃗(r,θ)

dr dr and R⃗(r, θ + dθ) − R⃗(r, θ) = dR⃗(r,θ)
dθ dθ from the parallelogram

can be used.
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SinceRdϕ is in the z direction perpendicular to the xy plane, the definition of rdϕ in a circle
can be used as is. To calculate the density of the universe seen by the β observer, the needed
area corresponding to dr × rdθ from the micro volume dr × rdθ × rdϕ is dR⃗(r,θ)

dr dr × dR⃗(r,θ)
dθ dθ.

What we want to know is not the absolute density, but the ratio of the density of the point P
to the density of the center β of the inertial system. So what is needed is not the actual mi‑
cro volume, but the ratio ofmicro‑volumes based on r and θ. So, I will compute dR⃗(r,θ)

dr × dR⃗(r,θ)
dθ .

In this case, since each point P is the same distance from point β and is arbitrary θ, the
observed events of particles aroundpoint P are not simultaneouswith respect to the observa‑
tion center C. Hence, the size of the universe at eachPevent basedonC is different. Therefore,
the area that is a parallelogram in this microdomain must be projected onto the normalized
universe, and since this is the case of an infinitesimal domain, the characteristics of a paral‑
lelogram do not change, only the size changes.

The expression corrected for that is dR⃗(r,θ)/T
dr × dR⃗(r,θ)/T

dθ , and since the z‑axis is the celestial
sphere based on the β inertial system, it becomes rdϕ, and since it only needs to be consid‑
ered around ϕ → 0, it is actually only the value of the z‑axis proportional to r. However, since
the time of the point P event differs according to θ as mentioned above, the z‑axis termmust
also be divided by the size (time) of the universe at that time point in the sameway. Since the
z term is always perpendicular to the previous parallelogram, it can be expressed as a scalar
product without need of vector product, and the proportional expression of the final micro
volume including this is

dR⃗(r, θ)/T

dr
× dR⃗(r, θ)/T

dθ
· dR⃗(r, θ, ϕ)/T

dϕ

. This can be expressed conveniently in a determinant.

∣∣∣∣∣∣∣∣
dR⃗(r,θ)/T

dr · X̂ dR⃗(r,θ)/T
dr · Ŷ 0

dR⃗(r,θ)/T
dθ · X̂ dR⃗(r,θ)/T

dθ · Ŷ 0

0 0 dR⃗(r,θ,ϕ)/T
dϕ · Ẑ

∣∣∣∣∣∣∣∣
This can be expressed by the C‑referenced Cartesian coordinate expression X(r, θ)X̂ +

Y (r, θ)Ŷ prepared in Calculation 12, rather than the β‑referenced polar coordinate expression
R vector,
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Figure 48: Orthogonal coordinate representation

And, as for the Z‑axis, φ‑direction, since it is a value only of the z‑axis, it simply can be ob‑
tained directly from the definition and is dR⃗(r,θ,ϕ)/T

dϕ · Ẑ = dZ(r,θ,ϕ)/T
dϕ = r/2

T . The reason why 1/2
is entered is that it is the celestial sphere in the β inertial system, and this has been explained
through the figure of ’The observed universe’. With this and the Cartesian coordinate position
expressionX(r, θ)X̂ + Y (r, θ)Ŷ , the ratio of the micro volume is expressed as follows.∣∣∣∣∣∣∣

dX(r,θ)/T
dr

dY (r,θ)/T
dr 0

dX(r,θ)/T
dθ

dY (r,θ)/T
dθ 0

0 0 r/2
T

∣∣∣∣∣∣∣
What is being attempted to confirm is the uniformity and isotropy of the universe as seen

from the β inertial system, so Xo and Yo, which are the functions of θo used in the β inertial
system, must be used. And these have been input in Calculation 18.

At this point, the size r of the universe seen from point β is the age of the universe at point
β,
√
1− β2, which is smaller than compared to point C. Multiply this by r/2 is r

2

√
1− β2, and

divide this by To to project onto the normalized universe. Of course, when looking at C from
β, the age of the universe on the C side will be

√
1− β2, but this is relativistic, and here I am

basically describing the universe viewed from the viewpoint of the observation center C.

I will now find the determinant of unit volume by applying all of these. However, since the
machine’s ability to organize formulas is still a bit lacking, the ’tsimp’ function that helps to
organize formulas is manually defined and substituted, artificially intervening in the process
of simplifying formulas a little, making it easier to confirm. Without this, the formula would
be overly long and complex.

Function definition in friCAS uses ==, and := is a variable value assignment, and = is sim‑
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ply an equation notation. Symbolic arithmetic can also be used in function definitions. In
the case of friCAS linked with TeXmacs, the determinant can be input using the determinant
symbol directly as shown below, or using a matrix in the ’determinant’ function. The ’map’
function is a higher‑order function ’map’ familiar to functional programming languages. It
was used to apply the ’tsimp’ function to all the constituent values of a matrix. The applied
result is also too long to display directly, so it is easy to see the result of the input matrix cal‑
culation by calculating the difference with the manually arranged result to show that it is a 0
or 0 matrix. It was a shortcut to show the output neatly. If you are a reader who is following
the input yourself, it is also recommended to check the output before it is simplified.

(19)− >tsimp(x) == eval
(
x,
√

1− cos(θo)2 = sin(θo)
)

Type: Void

(20)− >map

tsimp,


D
(
xo
To , r

)
D
( yo
To , r

)
0

D
(
xo
To , θo

)
D
( yo
To , θo

)
0

0 0 r
2

√
1−β2

To


−


(−2β2+2) cos(θo)
(rβ cos(θo)−r+2)2

2 sin(θo)
√

−β2+1

(rβ cos(θo)−r+2)2
0

((−r2+2r)β2+r2−2r) sin(θo)
(rβ cos(θo)−r+2)2

((−r2+2r) cos(θo)+r2β)
√

−β2+1

(rβ cos(θo)−r+2)2
0

0 0
r
√

−β2+1

rβ cos(θo)−r+2


 0 0 0

0 0 0

0 0 0


Type: Matrix(Expression(Integer))

Therefore, it can be seen that the value of the determinant, which is the normalizedmicro
volume ratio, is

(21)− >detro :=

∣∣∣∣∣∣∣∣
D
(
xo
To , r

)
D
( yo
To , r

)
0

D
(
xo
To , θo

)
D
( yo
To , θo

)
0

0 0 r
2

√
1−β2

To

∣∣∣∣∣∣∣∣ ;
2r2(1−β2)2

(rβ cos(θo)−r+2)4
− tsimp(detro)

0

Type: Expression(Integer)

2r2(1− β2)2

(rβ cos(θo)− r + 2)4

The particle density ratio of the universe in polar coordinates of r θo φ viewed from point
β is the product of the normalized density distribution 1

(1−β2)2
and the normalized micro vol‑

ume ratio at the observed point. To calculate this, the micro volume ratio will be multiplied
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by 1
(1−β2)2

= 1(
1−xo2+yo2

To2

)2 as done in Calculation 13.

(22)− >tsimp

 1(
1−xo2+yo2

To2

)2

∣∣∣∣∣∣∣∣
D
(
xo
To , r

)
D
( yo
To , r

)
0

D
(
xo
To , θo

)
D
( yo
To , θo

)
0

0 0 r
2

√
1−β2

To

∣∣∣∣∣∣∣∣


r2

8r2−16r+8

Type: Expression(Integer)

Summarizing this result a little further, it becomes 1
8

(
r

1−r

)2. Since this is the same expres‑
sion for all directions irrelevant to θo, it was confirmed that the isotropy of the universe was
satisfied.

As in the case of the age equation of the universe, this equation also must be possible to
obtain in a direct waywhen at observation center C. Briefly, when βp = r

2−r is the result of Cal‑
culation 14 and the density function of the form βp is 1

(1−βp2)2
, the polar coordinate definition

of the volume element with radius βp in the normalized universe is βp2dβpdθdϕ, andwhen f(r)
is the density function in r θ φ polar coordinates, it is 1

(1−βp2)2
βp2dβpdθdϕ = f(r)drdθdϕ, thus

we can see that it is f(r) = 1
(1−βp2)2

βp2 dβpdr . Deriving this, it is

(23)− >eval
(

1
(1−βp2)2

βp2D
(

r
2−r , r

)
, βp = r

2−r

)
r2

8r2−16r+8

Type: Fraction(Polynomial(Integer))
, and as a result, the density distribution of the universe viewed from the central inertial

system C and the density distribution of the universe viewed from an arbitrary β inertial sys‑
tem is the same

1

8

(
r

1− r

)2

in the polar coordinate system, and it is confirmed that the universe is uniform and isotropic.

It can be seen that, here, the three are noteworthy as ways of describing distance in the
universe. They are r, the distance corresponding to the redshift z+1, and βp. The relationship
between each distance can be obtained using the results of calculations 14 and 15. Since z+1
is more convenient than z, I will refer to this as zn and will use it.

First, when zn =
√

1+βp
1−βp , the values already defined from calculations 14 and 15 are βp =

r
2−r and zn = 1√

1−r
. Using these to compute the remaining missing relationships,
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(24)− > solve
(
βp = r

2−r , r
)
,

solve
(
zn = 1√

1−r
, r
)
,

solve
(
zn =

√
1+βp
1−βp , βp

)
[[r = 2βp

βp+1 ], [r = zn2−1
zn2 ], [βp = zn2−1

zn2+1
]]

Type: Tuple(List(Equation(Expression(Integer))))

Summarizing all the relationships between the three distance definitions,

βp = r
2−r

βp = zn2−1
zn2+1

r =
2βp

βp+1

r = zn2−1
zn2

zn = 1√
1−r

zn =
√

1+βp

1−βp

Thedensity function in the polar coordinate of calculations 22 and 23 canbeobtainedwith
even the changed distance notation to zn or βp instead of r. From

1

(1− βp2)2
βp2dβpdθdϕ = f(zn)dzndθdϕ→ f(zn) =

1

(1− βp2)2
βp2

dβp

dzn

and from
1

(1− βp2)2
βp2dβpdθdϕ = f(βp)dβpdθdϕ→ f(βp) =

1

(1− βp2)2
βp2

(25)− >eval
(

1
(1−βp2)2

βp2, βp = zn2−1
zn2+1

)
D
(
zn2−1
zn2+1

, zn
)
,

1
(1−βp2)2

βp2

[ zn
4−2zn2+1
4zn3 , βp2

βp4−2βp2+1
]

Type: Tuple(Fraction(Polynomial(Integer)))

We can also use the result of Calculation 22 as the density function.
(26)− > eval

(
1
8

(
r

1−r

)2
, r = zn2−1

zn2

)
D
(
zn2−1
zn2 , zn

)
,

eval

(
1
8

(
r

1−r

)2
, r = 2βp

βp+1

)
D
(

2βp
βp+1 , βp

)
[ zn

4−2zn2+1
4zn3 , βp2

βp4−2βp2+1
]

Type: Tuple(Fraction(Polynomial(Integer)))

For fun, I will also introduce a calculation based on the zn distance for the previous calcu‑
lation 22.
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(27)− > eq := r = zn2−1
zn2 ,

T zn := eval(To, eq),

Xzn := eval(xo, eq),

Y zn := eval(yo, eq)

[r = zn2−1
zn2 , (zn

2−1)β cos(θo)+zn2+1
2zn2 ,

(zn2−1) cos(θo)+(zn2+1)β
2zn2 ,

(zn2−1)
√

−β2+1
√

− cos(θo)2+1

2zn2 ]

Type: Tuple(Any)

(28)− >map

tsimp,


D
(
Xzn
Tzn , zn

)
D
(
Y zn
Tzn , zn

)
0

D
(
Xzn
Tzn , θo

)
D
(
Y zn
Tzn , θo

)
0

0 0 eval

(
r
2

√
1−β2

To , eq

)

−


(−4znβ2+4zn) cos(θo)

((zn2−1)β cos(θo)+zn2+1)2
4zn sin(θo)

√
−β2+1

((zn2−1)β cos(θo)+zn2+1)2
0

((zn4−1)β2−zn4+1) sin(θo)
((zn2−1)β cos(θo)+zn2+1)2

((zn4−1) cos(θo)+(zn4−2zn2+1)β)
√

−β2+1

((zn2−1)β cos(θo)+zn2+1)2
0

0 0
(zn2−1)

√
−β2+1

(zn2−1)β cos(θo)+zn2+1


 0 0 0

0 0 0

0 0 0


Type: Matrix(Expression(Integer))

(29)− >
4zn

(1−β2)2

(zn2−1)2(
β cos(θo)+ zn2+1

zn2−1

)4 − tsimp


∣∣∣∣∣∣∣∣∣
D
(
Xzn
Tzn , zn

)
D
(
Y zn
Tzn , zn

)
0

D
(
Xzn
Tzn , θo

)
D
(
Y zn
Tzn , θo

)
0

0 0 eval

(
r
2

√
1−β2

To , eq

)
∣∣∣∣∣∣∣∣∣


0

Type: Expression(Integer)

(30)− >
4zn

(1−β2)2

(zn2−1)2(
β cos(θo)+ zn2+1

zn2−1

)4
1(

1−Xzn2+Y zn2

Tzn2

)2

zn4−2zn2+1
4zn3

Type: Expression(Integer)

Summarizing the polar coordinate universe density function with three distance expres‑
sions, they are as follows,

First, for a small volume area defined by drdθdϕ, it is

1

8

(
r

1− r

)2

, for a small volume area defined by dzndθdϕ, it is
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1

4zn

(
zn2 − 1

zn

)2

, and for a small volume area defined by dβpdθdϕ, it is(
βp

1− βp2

)2

. Now that the uniformity and isotropy in the structure of cosmic particle density have been
confirmed, the cosmic background radiation will be analyzed.

2.7 Doppler beaming, Doppler shift, and the blackbody radiation
As a theoretical basis for analyzing the cosmic background radiation, the Doppler beaming
will be first calculated. Doppler beaming or Relativistic beaming is the opposite concept of
velocity aberration of light, and refers to a phenomenon inwhich light emitted from an object
moving at a speed close to the speed of light is concentrated forward.

Figure 49: Doppler beaming : The opposite of velocity aberration of light

The figure of the relative celestial sphere can be used to depict Doppler beaming which is
similar to the expression of velocity aberration of light. The light radiated at an angle of θo in
the β inertial frame will appear to be radiated at an angle of θs more forward in the C inertial
frame of reference.
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In this case, in the case of the sphere in the β inertial system, the number of photons
flowing out through the area forming the ring with the fine angle dθo at θo is as much as
2πr sin(θo)rdθo

4πr2
= sin(θo)dθo

2 out of the total photons. Since this is observed to flow out through
the micro‑area of sin(θs)dθs

2 in the C inertial frame, the beaming intensity ratio is

sin(θo)dθo
sin(θs)dθs

. Calculating this,

First, since the equation of the ellipse is r
2

1−β2

1−β cos(θs) based on the β(1‑r) point and θs,
(31)− >solve

(
r
2

1−β2

1−β cos(θs) sin(θs) = r
2

√
1− β2 sin(θo), θo

)
[θo = asin( (β2−1) sin(θs)

(β cos(θs)−1)
√

−β2+1
)]

Type : List (Equation (Expression (Integer)))

Therefore, it can be seen that

sin(θo)
sin(θs) =

√
1− β2

1− β cos(θs)
. Now, finding dθo

dθs , it is

(32)− >dθo
dθs = eval

(
D

(
asin( (β2−1) sin(θs)

(β cos(θs)−1)
√

−β2+1
), θs

)
, sin(θs) =√1− cos(θs)2

)
dθo
dθs =

(cos(θs)−β)
√

−β2+1

(β2 cos(θs)2−2β cos(θs)+1)

√
cos(θs)2−2β cos(θs)+β2

β2 cos(θs)2−2β cos(θs)+1

Type : Equation (Expression (Integer))

Summarizing the above result,

dθo

dθs
=

√
1− β2

1− β cos(θs) =
sin(θo)
sin(θs)

Therefore, the beaming intensity ratio is

sin(θo)dθo
sin(θs)dθs =

1− β2

(1− β cos(θs))2
. The θs to be used for the Doppler shift is defined by the following figure.

113



Figure 50: The angle of radiation

Assume that a stationary observer at point C sees the light emitted by an object moving at
a speed of β at point P at an angle of θs. This is in order to match the meaning of θs with the
ratio of beaming intensities.

Since the magnitude of the relative velocity based on the center of observation of P and
C is −β cos(θs), the classical Doppler shift equation for the frequency is 1

1−β cos(θs) . The rela‑
tivistic Doppler shift is a value multiplied this by the speed of time flow at P, so the relativistic
Doppler shift is

1

z + 1
=

√
1− β2

1− β cos(θs)
. At this time, When looking at the change in the intensity of the emitted light due to the
Doppler shift, the energy of the emitted photons is proportional to 1

Z+1 , and the emission rate
of photons is also proportional to 1

Z+1 , so the energy emission rate due to the Doppler shift is
proportional to the square of them. Therefore,

1

(z + 1)2
=

1− β2

(1− β cos(θs))2
this exactly matches the effect due to Doppler beaming calculated earlier. Therefore, the en‑
ergy emission rate, taking into account both Doppler beaming effect and Doppler shift is de‑
termined solely by the observed redshift and is equal to
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1

(z + 1)4
=

(1− β2)2

(1− β cos(θs))4
. Here, considering the law of inverse square according to distance, it suggests that the lumi‑
nosity of a certain star or galaxy will appear to follow the luminosity according to equation

1

r2
1

(z + 1)4

proportional to 1
r2

which is the inverse square of its distance to that star or galaxy, and the
1

(Z+1)4
above.

This result shows that, if considering the emissivity per unit areawhenblackbody radiation
from some substance at position P is Doppler‑shifted, it will be found that the frequency di‑
rectly proportional to temperature T is shifted according to 1

zn = 1
z+1 . Therefore, the observed

emissivity per unit area will follow the fourth power of the observed temperature, so it can
be seen that it always satisfies the emission rate according to the Stefan‑Boltzmann formula
2π5k4

15c2h3T
4, which represents the energy emission rate according to the fourth power of the tem‑

perature in ideal blackbody radiation.

If the above expression is expressed as r or z only, they are(
1− r

r

)2

, and
1

z2(z + 2)2

. These expressions represent relativedistanceand luminous intensity, so they shouldbeused
with care.

It has now been confirmed that cosmic background radiation emitted from the omnidi‑
rectional universe will be observed as perfect blackbody radiation with partial temperature
distribution. Based on this, I will deal with the cosmic microwave background radiation.
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2.8 Cosmicmicrowave background radiation

Figure 51: Cosmic microwave background radiation

The motion relative to the cosmic background radiation is described through the cosmic
microwave background radiation diagram. The point β inertial system is a primordial inertial
system and is moving away from the center C at a speed of β. In this case, if there is an ob‑
server locatedatβandstationarywith respect to theobservationcenterC, theobserver canbe
seen as moving toward the center C at a speed of β when viewed from the primordial inertial
system β at that position. Here, the cosmic microwave background radiation is light gener‑
ated at point P on the observation ellipse r

2
1−β2

1−β cos(θ) and traveling from P to β at an angle of
θc + θ = θp. Pre‑enter the basic values as in Calculation 12, calculate the newadditional values

(33)− > Rθ := r
2

1−β2

1−β cos(θ) ,
T s := 1− r,

Te := r −Rθ,

x := β −Rθ cos(θ),
y = Rθ sin(θ),
y := Rθ

√
1− cos(θ)2

[ rβ2−r
2β cos(θ)−2 ,−r + 1, 2rβ cos(θ)−rβ2−r

2β cos(θ)−2 , ((−r+2)β2+r) cos(θ)−2β
2β cos(θ)−2 ,

(rβ2−r)
√

− cos(θ)2+1

2β cos(θ)−2 = (rβ2−r) sin(θ)
2β cos(θ)−2 ,

(rβ2−r)
√

− cos(θ)2+1

2β cos(θ)−2 ]

Type : Tuple (Any)

116



, and get

1

z + 1
=

√
1− β2

1− β cos(θp) = fr

, then

(34) ‑ >θc := acos

(
x√

x2+y2

)
,

θp := θc+ θ,

βp :=

√
x2+y2

Ts+Te

[acos( ((−r+2)β2+r) cos(θ)−2β

(2β cos(θ)−2)

√
((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4

),

acos( ((−r+2)β2+r) cos(θ)−2β

(2β cos(θ)−2)

√
((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4

) + θ,

(2β cos(θ)−2)

√
((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4

2β cos(θ)−rβ2+r−2
]

Type : Tuple (Expression (Integer))

(35) ‑ >fr :=
√

1−βp2

1−βp cos(θp) ;
ar := (2 β cos(θ)− 2)

√
((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4
;

fr ‑
(−2β cos(θ)+rβ2−r+2)

√
4(1−β cos(θ))2(1−β2)(1−r)

(−2β cos(θ)+rβ2−r+2)2

ar cos(acos( ((−r+2)β2+r) cos(θ)−2β
ar

)+θ)−2β cos(θ)+rβ2−r+2
= 0

0 = 0
Type : Equation (Expression (Integer))

The original output display was blocked because it was too long, and the expression was
manually abbreviated to check whether it is the same as the original expression. This expres‑
sion will be dealt with as a numerical calculation for now.

Here, unlike the case in the cosmic microwave background radiation figure where a sta‑
tionary observer observes blackbody radiation fromamoving object at point P, I will calculate
the Doppler shift of the light that a moving object receives based on the incoming blackbody
radiation from all directions. Using the notation from Calculation 34, It can be expressed as
follows,

1

z + 1
=

1 + β cos(θi)√
1− β2

The numerator is a term according to the classical Doppler shift, and the denominator is
a term according to the relativistic time delay of a moving observer. And since θi is the angle
of incidence at the point of view of the stationary observer C, it must be changed to θ applied
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with the velocity aberration of light when observed by a moving object.

For the relationship between θi and θ, refer to the Doppler beaming figure, but only the
sign of the cosine term of the equation of the ellipse needs to be accurately determined, so
if we assume an appropriately imaginary diagram tomatch the notation with the Calculation
34, it is

(36)− >solve
(

1−β2

1+β cos(θi)
√

1− cos(θi)2 =
√

1− β2
√
1− cos(θ)2, θi

)
[θi = acos(− cos(θ)+β

β cos(θ)−1 ), θi = acos(− cos(θ)−β
β cos(θ)+1 )]

Type : List (Equation (Expression (Integer)))

In this case, since the equation on the left must be used, the Doppler shift observed from
the point of view of a moving object considering the velocity aberration of light is

(37)− >eval

(
1+β cos(θi)√

1−β2
, θi = acos

( cos(θ)−β
1−β cos(θ)

))
β2−1

(β cos(θ)−1)
√

−β2+1

Type : Expression (Integer)

in summary, √
1− β2

1− β cos(θ)
The first equation in Calculation 35 represents the Doppler shift influenced by βp, combin‑

ing the Doppler shift due to the expansion of the universe and the Doppler shift resulting from
the relative motion with respect to β. In contrast, the second equation in Calculation 37 con‑
siders only the Doppler shift observed by a moving object, expressed in terms of β. To offset
the Doppler shift effect due to the expansion of the universe in the first equation, 1√

1−r
is mul‑

tiplied to retain only the terms related to relative motion, and then it will be compared with
the second equation.

The significant digits of numerical calculations of friCAS can be set using the ’digits’ func‑
tion. The ’eval’ function can perform multiple assignments at once, and if multiple relation‑
ships are assigned, they are entered as a list. The ’cons’ function is a function that creates a
list by adding r = 0.1 items to the first head of the given input list of pn, which is familiar to
Lisp language users.

(38)− > digits(256),

pn := [β = 0.7, θ = 0.3π]

[20, [β = 0.7, θ =

0.9424777960 7693797153 8793014983 8508652591 5081981253 1746292483 3776923449
21885862699588410447602635120394644425953984691994128153382865174669517607822438
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54433523508523081058155633166789338688468647911458932864329269978003383854269447
0136034949 5813605727 436946]]
Type : Tuple (Any)

(39)− > eval
(

fr√
1−r

, cons(r = 0.1, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.2, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.5, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.75, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.9, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)

[‑ 0.1 E ‑ 254, 0.0, 0.7 E ‑ 256, ‑ 0.4 E ‑ 255, ‑ 0.1 E ‑ 255]
Type : Tuple (Expression (Float))

(40)− >pn[β = 0.5, θ = 0.9π]

[β = 0.5, θ = 2.8274333882 3081391461 6379044951 5525957774 5245943759 5238877450
13307703476565758809876523134280790536118393327786195407598238446014859552400855
28234673156330057052556924317446689950036801606540594373437679859298780993401015
1562808341 0408104848 7440817182 31084]

Type : List (Equation (Polynomial (Float)))

(41)− > eval
(

fr√
1−r

, cons(r = 0.1, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.2, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.5, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.75, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)
,

eval
(

fr√
1−r

, cons(r = 0.9, pn)
)
− eval

( √
1−β2

1−β cos(θ) , pn
)

[‑0.1 E ‑ 255, 0.3 E ‑ 256, 0.0, 0.0, ‑ 0.3 E ‑ 256]
Type : Tuple (Expression (Float))

The first expression may appear complex in form, but it has been confirmed that the val‑
ues of the twoexpressions are identicalwithin a significant digit rangeof 255. This consistency
holds even when a larger number of significant digits is considered. In other words, concern‑
ing thecosmicmicrowavebackground radiation, theobservationsalignwithwhatanobserver
moving relative to a stationary background would perceive, irrespective of the distance rep‑
resented by r or z+1 where the background radiation originates.
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In summary, all the results indicate that cosmic microwave background radiation can be
considered as perfect blackbody radiation occurring at the edge of the universe. This conclu‑
sion holds regardless of the distance at which it occurs, the relative motion of the observer to
the background radiation, or the motion of the radiation source.

Numerical calculations have confirmed the equivalence of the two expressions, but it’s
also possible to demonstrate their equivalence throughmanual simplification of expressions.
While this process may be a bit laborious, I will perform it using friCAS to show the step‑by‑
step simplification.

(42) ‑ >fn1 := ((−r+2)β2+r) cos(θ)−2β

(2β cos(θ)−2)

√
((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4

,

fr2 := eval
(

fr√
1−r

, cos(acos(fn1) + θ) =
(
cos(θ)fn1− sin(θ)√1− (fn1)2

))
;

Type : Tuple (Expression (Integer))

The complex expression here is fr.
(‑2*β*cos(θ)+r*β^2‑r+2)*sqrt((((4*r‑4)*β^4+(‑4*r+4)*β^2)*cos(θ)^2+((‑8*r+8)*β^3+(8*r‑8)*β)*
cos(θ)+(4*r‑4)*β^2‑4*r+4)/(4*β^2*cos(θ)^2+(‑4*r*β^3+(4*r‑8)*β)*cos(θ)+r^2*β^4+(‑2*r^2+4*r)*
β^2+r^2‑4*r+4)))/((2*β*cos(θ)‑2)*sqrt((((‑4*r+4)*β^4+4*r*β^2)*cos(θ)^2+((4*r‑8)*β^3‑4*r*β)*
cos(θ)+r^2*β^4+(‑2*r^2+4)*β^2+r^2)/(4*β^2*cos(θ)^2‑8*β*cos(θ)+4))*cos(acos((((‑r+2)*β^2+r)*
cos(θ)‑2*β)/((2*β*cos(θ)‑2)*sqrt((((‑4*r+4)*β^4+4*r*β^2)*cos(θ)^2+((4*r‑8)*β^3‑4*r*β)*cos(θ)
+
r^2*β^4+(‑2*r^2+4)*β^2+r^2)/(4*β^2*cos(θ)^2‑8*β*cos(θ)+4))))+θ)‑2*β*cos(θ)+r*β^2‑r+2)

The expression is too complex to display directly, so I’ve provided it as a string. If you’re
following along with the calculations, you can view the friCAS output directly. To simplify this
expression, I applied substitution rules to eliminate the arccos term using trigonometric iden‑
tities,

cos(acos( ((−r + 2)β2 + r) cos(θ)− 2β

(2β cos(θ)− 2)
√

((−4r+4)β4+4r beta2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4

) + θ)

I used trigonometric rules such as,

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

and
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sin y =
√
1− cos2 y

to create substitution rules to eliminate the arccos term, and I saved the result in fr2.

(43)− >fn2 :=
√

((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

4β2 cos(θ)2−8β cos(θ)+4
,

fn3 :=
√

((−4r+4)β4+4rβ2) cos(θ)2+((4r−8)β3−4rβ) cos(θ)+r2β4+(−2r2+4)β2+r2

(2−2β cos(θ)) ,
fr3 := eval(fr2, fn2 = fn3) ;

Type : Tuple (Expression (Integer))

Using the previous results as new inputs, I simplified the expression in fn2 to create fn3,
and I saved this simplified expression in fr3. Since the denominator is always positive, this
simplification is valid. The result is also too long to display directly.

(44)− >fn4 :=
√

(r2β4−2r2β2+r2) cos(θ)2−r2β4+2r2β2−r2

((4r−4)β4−4rβ2) cos(θ)2+((−4r+8)β3+4rβ) cos(θ)−r2β4+(2r2−4)β2−r2
,

fn5 :=√((−4r + 4)β4 + 4rβ2) cos(θ)2 + ((4r − 8)β3 − 4rβ) cos(θ) + r2β4 + (−2r2 + 4)β2 + r2,

fn6 :=√−((r2β4 − 2r2β2 + r2) cos(θ)2 − r2β4 + 2r2β2 − r2),

fr4 := eval (fr 3, [fn 4 = fn 6, fn 5 = 1]) ;
Type : Tuple (Expression (Integer))

When looking at fr3, it is noticeable that there are parts where fn4 and fn5 are multiplied
in the denominator. Since these parts were not automatically simplified, I manually set fn5 to
1 and kept only the numerator of fn4 to eliminate that part.

(45)− >fn7 :=
√
(−r2β4 + 2r2β2 − r2) cos(θ)2 + r2β4 − 2r2β2 + r2,

fn8 := r (1 ‑ β2)
√

1− cos(θ)2,
fn9 :=√1− cos(θ)2,
fr5 := eval(fr4, [fn7 = fn8, sin(θ) = fn9])

[√(−r2β4 + 2r2β2 − r2) cos(θ)2 + r2β4 − 2r2β2 + r2,

(−rβ2 + r)
√
− cos(θ)2 + 1,√

− cos(θ)2 + 1,

(−2β cos(θ)+rβ2−r+2)

√
((4r−4)β4+(−4r+4)β2) cos(θ)2+((−8r+8)β3+(8r−8)β) cos(θ)+(4r−4)β2−4r+4

4β2 cos(θ)2+(−4rβ3+(4r−8)β) cos(θ)+r2β4+(−2r2+4r)β2+r2−4r+4

(2β2 cos(θ)2−4β cos(θ)+2)
√
−r+1

]

Type : Tuple (Expression (Integer))

Since it’s guaranteed to always be positive, fn7 can be simplified to fn8, and the remaining
sine functions have been expressed in terms of cosine functions. From this point on, the re‑
sults are simplified enough to be displayed, so they are displayed.
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(46)− > fn10 :=
√

((4r−4)β4+(−4r+4)β2) cos(θ)2+((−8r+8)β3+(8r−8)β) cos(θ)+(4r−4)β2−4r+4
4β2 cos(θ)2+(−4rβ3+(4r−8)β) cos(θ)+r2β4+(−2r2+4r)β2+r2−4r+4

,

fn11 :=
2(1−β cos(θ))

√
1−β2

√
1−r

(−2β cos(θ)+rβ2−r+2)
,

fr6 := eval(fr5, fn10 = fn11)

[
√

((4r−4)β4+(−4r+4)β2) cos(θ)2+((−8r+8)β3+(8r−8)β) cos(θ)+(4r−4)β2−4r+4
4β2 cos(θ)2+(−4rβ3+(4r−8)β) cos(θ)+r2β4+(−2r2+4r)β2+r2−4r+4

,
(2β cos(θ)−2)

√
−β2+1

√
−r+1

2β cos(θ)−rβ2+r−2
,

−
√

−β2+1

β cos(θ)−1 ]

Type : Tuple (Expression (Integer))

The value of fn10 is also guaranteed to always be positive, so it can be simplified to fn11.
Applying this, we can confirm that fr√

1−r
=

√
1−β2

1−β cos(θ) . This may be solvable through a sim‑
pler process in other CAS systems, and friCAS may also improve in the future. Here, I intro‑
duced the process of simplifying equations through a combination of manual and CAS‑based
methods when automatic simplification is not straightforward. CAS can be a significant aid in
performing complex and tedious calculations accurately, even when equations don’t simplify
automatically.

2.9 Total number of galaxies in the universe
It is possible to estimate the total number of galaxies in the universe to some extent. Since the
number of galaxies in a region of the universe shall be proportional to the number of particles
in that region, integrating the particle density function and using the known number of galax‑
ies within a certain distance and the distance to the farthest known primordial galaxy, it can
be estimated in some extent.

Since the particle density function in Calculation 22 is expressed in polar coordinates, it
can be directly integrated without additionally calculating and integrating the area according
to the distance. Integration in friCAS uses the ’integrate’ function. The expression to be in‑
tegrated, the variable to be integrated, and, if necessary, the integration interval is displayed
using ’..’, the two ’.’, and itmight be entered as three in the formula inputmode of TeXmacs, but
there is no problem. The notation ”noPole” indicates that the integral interval does not in‑
clude any poles of the function. Sometimes, integration fails with a ”potential pole”message.
If we are confident that there are no poles within the integration interval, entering ”noPole”
can resolve the issue. In this case, 1

8

(
r

1−r

)2 is used. This has a pole at r=1, However, since
there is no need to integrate up to that point, it can still be used.

(47)− >digits(50)

256
Type : PositiveInteger
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(48)− >integrate(18

(
r

1−r

)2
, r = 0..r, ”noPole”)

(r−1) log(r2−2r+1)+r2−2r
8r−8

Type : Union (f 1 : OrderedCompletion (Expression (Integer)), ...)

(r − 1) log(r2 − 2r + 1) + r2 − 2r

8r − 8
=

1

4
log(1− r) +

r

8

2− r

1− r

The result of this integral will be prepared as a function named TG.

(49)− >TG(r) == (r−1) log(r2−2r+1)+r2−2r
8r−8

Type : V oid

Since polar coordinates were used from the outset, there is no need to consider the in‑
creasing surface area with distance when calculating the integral. Just enter the following
information, the number of known galaxies that exist within 12 million light‑years is 152, the
age of the known universe is 13.8 billion years, and as of prior to 2021, the redshift of the far‑
thest known galaxy is z=11.

Since TG is a function of r, I will use r = zn2−1
zn2 of Calculation 24 and the definition in Figure

43 The observed universe. Although it is not exact, by dividing the total number of particles
up to the distance where galaxies begin to appear by the total number of particles up to the
distance where the number of galaxies is known, it is possible to estimate the total number of
galaxies of the universe. Since the TG function is the integration of the relative density, which
is 1 based on the observer, not the actual total number of particles. This is a calculation to
find the number of galaxies up to a far distance by calculating the ratio of the total number of
particles between two distances and multiplying the ratio by the number of known galaxies
within a short distance.

When r equals 1, it corresponds to the outermost. This distance corresponds to half the
age of the universe, which is actually 13.8/2 billion light‑years. Therefore, substitute 20.12

138 for r
in the denominator of TG, and substitute 122−1

122
, which is the value of r when zn=12, for r in the

numerator of TG. The result is,

(50)− >152
TG

(
122−1

122

)
TG(2 0.12

138 )1159_0774970220.4039828181_3924816361_3966209381_533438
Type : Expression (Float)

It is estimated that there are about 12 trillion galaxies in the entire universe. In reality, the
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z at which galaxies begin to actively form will be a little smaller and the age of the universe
will be a bit older. If substitute the more plausible values,

(51)− >152
TG

(
7.52−1

7.52

)
TG(2 0.12

145 )
483_2326279935.1814775736_4809891602_9694219114_6098787
Type : Expression (Float)

It’s approximately 5 trilliongalaxies,which is about2‑3 times larger than the latest estimate
known from observations in 2016 (arXiv:1607.03909). This rough estimate seems to align rea‑
sonablywell, but for amoreaccurate value, onewouldneed to refine theassumptionsmade in
this calculation, such as when galaxy formation started and ended in terms of the age of the
universe. Additionally, a more precise calculation would require consideration of variables
like our knowledge of galaxy mergers and whether our location in the universe is in a region
with a relatively rich or sparse distribution of galaxies. Applying weights based on different
galaxy formation models to the original density function and performing integrations would
also be necessary. The result of this calculation is a very rough estimate.

(52)− >152
TG

(
62−1

62

)
TG(2 0.12

138 )249_0607008872.4504104383_5344625355_4488173356_316798
Type : Expression (Float)

The lower limit estimated in this calculation appears to be similar to the 2016 observa‑
tional/estimated value. This suggests that more galaxies are expected to be discovered.

As of spring 2023, the farthest galaxy known is JADES‑GS‑z13‑0with a redshift of z=13.2. Af‑
ter the James Webb Space Telescope started operating, there were rumors about many high
z‑value galaxies being discovered (up to z=16‑20). However, as of February 2023, the officially
reported record is z=13.2 (arXiv:2212.04480). If the average position of galaxy formation ex‑
ceeds z = 10, the total number of galaxies according to the above formula will exceed 10 tril‑
lion. When zn = 14.2 is substituted into the above formula, it is calculated that approximately
16.5 trillion galaxies can be observed. However, I don’t think there will be that many galax‑
ies. The biggest reason is that galaxies are not evenly distributed in this universe, and matter
and galaxies exist densely packed in amesh‑like structure in some areas. Therefore, there is a
high probability that our own Milky Way galaxy is located in an area with a much higher den‑
sity of galaxies than the average density of the entire universe. However, on the other hand,
if the age of the universe, when galaxies begin to actively form, is a bit earlier, the number of
galaxies increases dramatically. In the end, the estimate for the total number of galaxies in
the universe is expected to be slightly over 5 trillion based on observed trends and estimates
of galaxy formation, although there may be significant variations depending on the accuracy
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of the data. I am concluding my estimate at this level. More accurate estimates with more
sophisticated models should be left to the realm of astronomy.

2.10 Temperature changes in the universe over time
The temperaturedistributionover time in the cosmologyof constant velocity expansionbased
on special relativity is obtained by simple logic. The space of the universe is not treated as a
medium such as air, water, or ether. It is sufficient to consider only the thermal equilibrium
conditions of the universe.

The age of the universe at a fixed distance background r observed in a certain inertial sys‑
tem is

t =
√
1− r = timethere

, and the corresponding observed redshift is

zn =
1√
1− r

. That is, it has the form of 1/t. In this case, the condition for the temperature of the surround‑
ing universe of the observer to reach thermal equilibrium with the past universe that has the
observed redshift is

Temphere = Tempthere
Timethere
Timehere

, or according to the expressionof ’TheDirac‑Milne cosmology’ currently advocatedbyagroup
of French scientists, it is

t =
1

H0

T0

T

(To: temperature of the current universe, t: age of the universe, Ho: Hubble constant, T: tem‑
perature of the universe at that age),
if the temperature change over time of the universe follows this function, then observers will
see that any region they observe, regardless of the direction and distance, is in thermal equi‑
librium with them. They will also observe that the temperature of every part of the universe,
including the background, is in thermal equilibrium. Since this holds regardless of location
and direction, any observer in any primordial inertial system can see that the universe is uni‑
form and isotropic.

This applies even if the universe is opaque to radiation due to either being hotter than
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3000°K the temperature at which hydrogen atoms become ionized and the universe becomes
opaque to visible light, or due to the high density of other opaque substances. That is, even if
theobservable radius of the celestial sphere is a small distance, it is possible to ensure thermal
equilibrium throughout the entire universe if only this condition holds within that range. In
otherwords, as long as the temperaturedistributionof theuniverse follows adistributionof 1/
t, regardless of the size of the visible region, this satisfies the condition of thermal equilibrium.

This explanation alone is sufficient for describing the temperature transitions in the uni‑
verse, but some may want a more microscopic explanation. To do so, locally, when the tiny
regions of each primordial inertial system of the universe expand, the high‑temperature par‑
ticles leave the region more quickly, leaving only the low‑temperature particles behind and
thus lowering the temperature of the remaining part. On the other hand, particles that enter
from outside enter with energy loss due to the speed difference between the inertial systems.
Therefore, the temperature of all regions decreases due to the expansion. For the size of each
tiny region, it can be defined as small as possible so that only one particle can exist on av‑
erage in that region. Therefore, the speed at which the temperature decreases in this tiny
region is simply the speed at which all temperatures are lost instantly since the particles that
were in the region have all gone elsewhere. However, particles from the surroundings fly in at
the same rate and define a new temperature in the region. The temperature is lowered by a
Doppler redshift proportional to the relative speed between the inertial systems. Therefore,
the decreasing rate follows the equilibrium condition of 1/t according to the redshift in real
time.

No other strange assumptions are needed here. However, temperature calculations based
on general relativity are different.

The formula for calculating the temperature by the expansion timeof theBigBang claimed
by general relativity‑based cosmology is as follows. (Source 2020.10.2 http://hyperphysics.
phy-astr.gsu.edu/hbase/Astro/expand.html#c3)

texp =
1

H
=

√
3C2

8πGρ0

When T»3000°k, most of the energy density is in the form of radiation energy and is said to
follow the next equation.

ρradiation(T ) ≈ (0.4MeV /m3)[
T

2.7K
]4

The final equation based on this is as follows.
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texp = [
2.7K

T
]2

√
3C2

8πG(0.4Mev/m3)

If T « 3000°K, the contribution of radiation energy to the energy density is negligible.

ρmass = (0.5GeV /m3)[
T

2.7K
]3

Therefore, the expansion time calculation formula is as follows.

texp = [
2.7K

T
]3/2

√
3C2

8πG(0.5Gev/m3)

(texp: time elapsed during expansion, T: temperature, k: Boltzmann constant, c: speed of
light, G: gravitational constant)

This formula demonstrates that the temperature of an observable universe below 3000°K
is proportional to the power of ‑3/2 of time. However, it is incomprehensible what this actu‑
ally means. They claim that a vacuum undergoes a phase transition, but there is no evidence
to support this. Even at the temperature that humans have easily produced on Earth for thou‑
sands of years, which is only 3000°K, they discuss the phase transition of space without any
experimental or physical evidence to support their claims, and merely make their argument
based on their own needs.

This implies the conclusion that the observed redshifted temperature of the cold, uncon‑
densed interstellar gas in the observable universe must be different from the average tem‑
perature of the universe. If so, even if the phase transition cannot be proven, it is a theory
that should be asserted after at least observing that. It will be impossible to explain with dark
energy. In order to tune the redshifted temperature of interstellar gas with the average tem‑
perature of the universe, another dark angel should have to appear again. I don’t believe that
such ad hoc explanations are even remotely true.

The fundamental difference between the two ideas is that general relativity‑based cosmol‑
ogy treats the thermodynamics of the universe as a closed systemand special relativity‑based
cosmology treats it as an open system even though it is a finite universe. Is our universe, in
which infinite matter and energy are irreversibly expanding, a thermally open universe or a
closed universe? If we take what is observed as the truth, it is either an open universe or a
universe indistinguishable from the open universe. Cosmology based on general relativity is
nothing more than the theory that denies what is observed and imagines that there must be
some hidden closure.
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2.11 The cosmological principle and constant velocity expansion
A basic assumption of general relativity‑based cosmology is that gravity will affect the ex‑
pansion of the universe. However, this is not the case in special relativity. If the universe is
isotropic, there is no bias of forces in any particular direction, so there can be no acceleration
or deceleration due to such a bias.

It’s not just can’t feel it, even though actually accelerating or decelerating. In addition to
gravity, there is another force in the universe that is actually acting between extremely distant
stars, and that is the force exchanged through the pressure of light between stars. Although it
is evenweaker than theweak gravity, it is a force transmitted at the speed of light, a force that
must be acting between stars, and it is also acting between the Sun and Earth. The same is
true for themomentum transferred by neutrinos and, although slower than the speed of light,
high‑energy particles are also transferring somemomentum. These forces, unlike gravity, can
be felt by the object receiving the force and can be used to test this question. Considering
whether these forces can affect the expansion of the universe, it can be seen that they cannot
because they are transmitted in the same amount in all directions according to the isotropic
principle of the universe. There is no reason to believe that the situation is different for grav‑
ity, another force transmitted at the speed of light.

Furthermore, apart from the discussion of forces, in this cosmology, the outermost shell of
the universe possesses infinite mass and is expanding at the speed of light. It’s impossible to
either slow down or accelerate this expansion. Consequently, wemust acknowledge that the
outermost shell is expanding at a constant speed. When examining this issue, it raises ques‑
tions like, ”Then, can the interior accelerate or decelerate?” or ”When only the outermost part
of the universe is expanding at a constant speed, can the density distribution inside the uni‑
verse be rearranged over time due to gravity?” The answer is ”no,” unlesswe abandon the uni‑
formity of the universe. This is fundamentally amatter of geometry, akin to Galileo’s principle
of relativity. Imagine a set of points that all start at the samemoment from a single point and
then explode and scatter in arbitrary directions at arbitrary speeds. Regardless of which point
you choose, as long as all these points are expanding at constant velocities, the observation
will appear as if other points are moving away from that chosen point. No angular velocity
can be measured for these moving points. However, if the expansion velocity varies due to
gravitational forces centered on a point, other points will detect this through the generation
of angular velocities at certain observed points. This would violate the uniformity of the uni‑
verse.

However, it is possible to question whether the overall change in energy within the uni‑
verse shell’s interior, as a result of the expansion, might eventually influence the rate of time
flow, and consequently, the overall expansion rate. While this is a matter that should be con‑
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sidered alongside a more rigorous theory of gravity, qualitative speculation can be offered.
The idea is that any changes in positional energy would not only affect the expansion rate but
also the speed of light as time progresses. Therefore, the expansion rate, relative to the speed
of light, remains constant. In other words, it would appear as a uniform expansion to an ob‑
server inside. This provides apotential excuse, althoughamore thorough investigationwould
be required in conjunction with a more precise gravitational theory.

The question of whether this change in potential energy affects the cosmic microwave
background radiation or the spectroscopic properties of distant stars is difficult to answer.
It is that there is no effect, or if there is, it is too small to be observed, which is the result of
observations of the cosmic microwave background radiation to date. It has already been ob‑
served that if it does change, the changemust benegligible such that by the timeof the cosmic
microwave background radiation, there will be very little observable difference from today.

This special relativity‑based cosmology describes a universe with a finite size but at the
same time infinite space and the idea that the rate of expansion of the universe can be af‑
fected by gravity is only valid if we assume that the universe is finite after all. The cosmologies
based on general relativity cannot adequately describe the infinite aspects of the universe,
and I think that only this cosmology based on special relativity can provide a complete depic‑
tion of the deeper aspects of the universe.

I conclude that gravity cannot affect the speed of expansion of the universe, and leave fur‑
ther discussion of the remaining issues, such as spectroscopic properties, to the next genera‑
tion of theories.

2.12 The cosmological principle and relativity
From the point of view of special relativity, right now, here is the oldest part of the universe,
with the fastest flow of time.

Other regions of the observable universe are always new regions younger than this one.
If so, let’s see what happens when we go there ourselves. For example, let’s consider what it
would look like if we flew at the speed of light to a distant place about z+1=100 and looked
back at the earth.

Logically, the answer is straightforward. The earth seen from there would be z+1=100, so
the flow of time would appear to be 1/100. Therefore, the age of the universe felt in there
should be 1.4 trillion years, which is 100 times greater than the current age of about 14 billion
years felt by the earth here, and the earth still would be seen to be in the area of 14 billion

129



years old.

This is a conjecture based on the principle of relativity. Let’s see if it holds true in actual
calculations.

First, we need to find the value of β for the region running away at speed z+1=100. We can
use the expression for βp = zn2−1

zn2+1
from earlier. We can see that it is simply 9999

10001 .

This region is currently 9999
1000114 = 139986

10001 billion light years away from Earth. Therefore, the
time it takes tocatchupwith this regionat the speedof light is vt+l = ct→ t = l

c−v , so
139986
10001

1− 9999
10001

=

69993 billion years. The time that will pass in that area during that time is 69993
√

1−
(

9999
10001

)2.
And, the current age of that area is 14

√
1−

(
9999
10001

)2.
Therefore, the age of the region when pursued at the speed of light is

(69993 + 14)

√
1−

(
9999

10001

)2

= 1400

billion years, which is exactly 100 times 14 billion years. Of course, at that point, the age of
this place seen from there is 14 billion years.

Thus, we can see that the relativity between the primordial inertial systems of the universe
is maintained.

Among the cosmological theories proposed so far, there is no other theory that mathe‑
matically explains the uniformity and isotropy of the universe. While theories based on gen‑
eral relativity indirectly address the curvature of the universe, the curvature has been negated
in current observations. Therefore, as of now, the theory I am presenting is the only mathe‑
matical explanation for the uniformity of the universe. It is not difficult to speculate on which
theory, among those that can provide such an explanation and those that cannot, might be
closer to the truth.

2.13 Some issues and criticisms
2.13.1 The issue of accelerated expansion and dark energy

Cosmology based on special relativity is a theory of constant velocity expansion, but it has an
answer to the question of the accelerating expansion of the universe or dark energy, which
has become amajor issue recently.
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